Skip to main content
Log in

Influx of stratospheric air into the lower troposphere increased after solar Hα flares, X ray flares and after passages of solar magnetic sector structure boundaries

Gesteigerter Zufluß stratosphärischer Luft in die untere Troposphäre nach solaren Hα-Flares, Röntgenstrahlen-Flares und nach Passagen von Sektorengrenzen des solaren Magnetfeldes

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

A previous, tentative study of the question whether solar events will increase the frequency of influxes of stratospheric air into the lower troposphere, was corroborated by considerable augmentation of the data. It has now been established significantly for the period from late 1969 through 1972, that the frequency of injections of stratospheric air will multiply after Hα and X ray flares, and also after passages of solar magnetic sector boundaries. Additionally, during periods of several months' duration, with increased solar activity, a relation to the relative sunspot number was demonstrated. It thus appears obvious that we must look to certain solar events for the main triggering process causing injections of stratospheric air. Although the causality structure involved is not cleared up, as yet, prognostic application of the finding is nevertheless possible.

Zusammenfassung

Eine vorangegange, vorläufige Untersuchung zur Frage, ob durch solare Ereignisse die Häufigkeit von Einbrüchen stratosphärischer Luft in die untere Troposphäre erhöht ist, wurde durch wesentliche Vermehrung der Daten untermauert. Aus der Zeit von Ende 1969 bis einschließlich 1972 wurde nunmehr signifikant gesichert, daß die Häufigkeit der eben erwähnten Stratosphärenluft-Einbrüche nach Hα und X Ray flares auf der Sonne und außerdem nach Passagen von Sektorengrenzen des solaren Magnetfeldes um ein Mehrfaches ansteigt. Während einer vorübergehenden, mehrmonatigen Periode erhöhter solarer Aktivität ließ sich außerdem eine Relation zur relativen Sonnenfleckenzahl nachweisen. Damit scheint sichergestellt, daß wir in gewissen solaren Ereignissen einen hauptsächlich auslösenden Vorgang für Stratosphärenluft-Einbrüche zu sehen haben. Wenn auch das Kausalgefüge noch nicht durchschaubar ist, kann die Feststellung immerhin prognostisch verwertet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, M. S., and A. Walton: Fluctuations of Atmospheric Carbon-14 Concentrations during the Past Century. Proc. Roy. Soc. Lond. A,321, 105–127 (1971).

    Google Scholar 

  2. Bossolasco, M., I. Dagnino, A. Elena, and G. Flocchini: Solar Flare Control of Thunderstorm Activity. Istit. Universit. Navale di Napoli Ist. di Meteorologia e Oceanografia, 1972.

  3. Dessler, A. J.: Some Problems in Coupling Solar Activity to Meteorological Phenomena. Report 1973, Contract NASA SRT Grant NGL 44-006-012, 1–14.

  4. Gnevyshew, M., and B. Sazonov: The Influence of Solar Activity on Processes in the Earth's Lower Atmosphere. Soviet Astronomy-AJ8, 750–759 (1965).

    Google Scholar 

  5. Markson, R.: Considerations Regarding Solar and Lunar Modulation of Geophysical Parameters, Atmospheric Electricity and Thunderstorms. PAGEOPH84, 161–200 (1971).

    Google Scholar 

  6. Reiter, R.: Solar Flares and Their Impact on Potential Gradient and Air-Earth Current Characteristics at High Mountain Stations. PAGEOPH72, 259–267 (1969).

    Google Scholar 

  7. Reiter, R.: Further Evidence for Impact of Solar Flares on Potential Gradient and Air-Earth Current Characteristics at High Mountain Stations. PAGEOPH86, 142–158 (1971).

    Google Scholar 

  8. Reiter, R.: Increased Influx of Stratospheric Air into the Lower Troposphere after Solar Hα and X Ray Flares. Geophys. Res.78, 6167–6172 (1973).

    Google Scholar 

  9. Reiter, R.: Solar-Terrestrial Relationships of an Atmospheric-Electrical and Meteorological Nature: New Findings. Rivista Italiana di GeofisicaXXII, 247–258 (1973).

    Google Scholar 

  10. Roberts, W. O., and R. H. Olson: New Evidence for Effects of Variable Solar Corpuscular Emission on the Weather. Rev. Geoph. and Space Physics11, 731–740 (1973).

    Google Scholar 

  11. Roberts, W. O., and R. H. Olsen: Geomagnetic Storms and Wintertime 300 mb Through Development on the North Pacific—North America Area. J. Atmosph. Science 1973 (in print).

  12. Rocznik, K.: Sonnenaktivität und Jahreszeiten-Witterung in Mitteleuropa. Meteorol. Rundschau26, 129–132 (1973).

    Google Scholar 

  13. Svalgaard, L.: Polar Cap Magnetic Variations and Their Relationship with the Interplanetary Magnetic Sector Structure. J. Geophys. Res.78, 2064–2078 (1973).

    Google Scholar 

  14. Svalgaard, L.: The Relation between the Azimuthal Component of the Interplanetary Magnetic Field and the Geomagnetic Field in the Polar Caps. SUIPR Report No. 521, Nat. Science Found. Grant GA-31138, Office Naval Res. Contract N00014-67-A-0112-0068, 1973.

  15. Svalgaard, L.: Solar Activity and the Weather. SUIPR Report No. 526, Nat. Science Found. Grant GA-31138, Office Naval Res. Contract N 00014-67-A-0112-0068, 1973.

  16. U. S. Department of Commerce, Solar Geophysical Data, Boulder, Col., 1969–1973.

  17. Wilcox, J. M.: The Interplanetary Magnetic Field, Solar Origin and Terrestrial Effects. Space Science Rev.8, 258–328 (1968).

    Google Scholar 

  18. Wilcox, J. M.: Solar Magnetic Fields and Their Influence on the Earth. Naval Res. Rev.XXIV, 16–24 (1973).

    Google Scholar 

  19. Wilcox, J. M.: Solar Activity and the Weather. SUIPR Report No. 544, Nat. Science Found. Grant GA-31138, Office Naval Res. Contract N00014-67-A-0112-0068, 1973.

  20. Wilcox, J. M., and D. S. Colburn: Interplanetary Sector Structure in the Rising Portion of the Sunspot Cycle. J. Geophys. Res.74, 2388–2392 (1969).

    Google Scholar 

  21. Wilcox, J. M., and D. S. Colburn: Interplanetary Sector Structure Near the Maximum of the Sunspot Cycle. J. Geophys. Res.75, 6366–6370 (1970).

    Google Scholar 

  22. Wilcox, J. M., and D. S. Colburn: Interplanetary Sector Structure at Solar Maximum. J. Geophys. Res.77, 751–756 (1972).

    Google Scholar 

  23. Wilcox, J. M., P. H. Scherrer, L. Svalgaard, W. O. Roberts, R. H. Olson, and R. L. Jenne: Influence of Solar Magnetic Sector Structure on Terrestrial Atmospheric Vorticity. SUIPR Report No. 530, Nat. Science Found. Grant GA-31138, Office Naval Res., Contract N00014-67-A-0112-0068, 1973.

  24. Wilcox, J. M., P. H. Scherrer, L. Svalgaard, W. O. Roberts, and R. H. Olson: Solar Magnetic Sector Structure: Relation to Circulation of the Earth's Atmosphere. Science180, 185–186 (1973).

    Google Scholar 

  25. Woodbridge, D. D.: Comparison of Geomagnetic Storms and Trough Development at Solar Activity Maximum and Minimum. Plan. Space Science19, 821–826 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R. Influx of stratospheric air into the lower troposphere increased after solar Hα flares, X ray flares and after passages of solar magnetic sector structure boundaries. Arch. Met. Geoph. Biokl. A. 24, 147–162 (1975). https://doi.org/10.1007/BF02245374

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245374

Keywords

Navigation