Skip to main content
Log in

The effect of soil moisture upon the atmospheric and soil temperature near the air-soil interface

Die Wirkung der Bodenfeuchte auf die Temperatur der Luft und des Bodens nahe der Grenzfläche zwischen Luft und Boden

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

The soil and atmospheric boundary layers, considered as a coupled, non-steady state, heat-moisture transfer system, is analyzed to examine the effects of soil moisture variations upon the temperature distributions of the air layer near the ground and the underlying soil. The exchange coefficient for the air is approximated by the Keyps formula; the soil diffusion equations follow the theory of Philip [8]; a method described by Möller [7] is used to treat the long wave radiation; and global radiation is obtained using a procedure first outlined by Philipps [10].

The results of this analysis are subsequently compared with actual data collected in the Great Plains Turbulence Project by Lettau and Davidson [4] and with the model of Sasamori [15] which is partly based upon the constant flux assumption. It is found that reasonable variation in the soil moisture content gives non-negligible variations of the temperature profile in the atmosphere as well as in the soil. Results, however, are not critically different from each other. The specification of the soil type can be of greater importance than the description of soil moisture which is hardly ever known.

Zusammenfassung

Wärme- und Feuchtefluß in den Grenzschichten des Erdbodens und der Atmosphäre werden als gekoppeltes, nicht-stationäres Gleichungssystem erfaßt. Die numerische Lösung des Systems führt auf die hier zu untersuchende Temperaturverteilung der bodennahen Luftschicht und des Erdbodens. Der Luftaustausch wird mittels der Keyps-Formel erfaßt, während die Diffusionsgleichungen des Erdbodens sich auf die Theorie von Philip [8] stützen. Die langwelligen und globalen Strahlungsströme werden nach Methoden berechnet, die von Möller [7] und Philipps [10] skizziert wurden.

Resultate werden mit Meßdaten des Great-Plains-Turbulence-Projektes von Lettau und Davidson [4] sowie mit dem Sasamorischen Modell [15] verglichen, welches zum Teil auf der sogenannten Constant-Flux-Annahme beruht. Es wird gefunden, daß vernünftige Variationen der Bodenfeuchte nicht-vernachlässigbare Variationen in den Temperaturprofilen des Erdbodens und der bodennahen Luftschicht hervorrufen. Die Resultate weichen jedoch nicht kritisch voneinander ab. Eine sachgerechte Erfassung des Erdbodentypus kann von größerer Wichtigkeit sein als die Beschreibung der Bodenfeuchte, die meist nur ganz ungenau bekannt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baver, L. D., W. H. Gardner, and W. R. Gardner: Soil Physics. 4th Ed. New York: John Wiley and Sons, 498 pp., 1972.

    Google Scholar 

  2. Feussner, K., and P. Dubois: Trübungsfaktor, Precipitable Water, Staub. Gerlands Beitr. Geophys.27, 132–175 (1930).

    Google Scholar 

  3. Fleagle, R. G., and J. A. Businger: An Introduction to Atmospheric Physics. New York: Academic Press, 76–77 (1963).

    Google Scholar 

  4. Lettau, H. H., and B. Davidson: Exploring the Atmosphere's First Mile. New York: Pergamon Press, 578 pp., 1957.

    Google Scholar 

  5. McDonald, J. E.: Direct Absorption of Solar Radiation by Atmospheric Water Vapor. J. Meteor.17, 319–328 (1960).

    Google Scholar 

  6. Meinzer, O.: Hydrology. New York: McGraw-Hill, 712 pp., 1942.

    Google Scholar 

  7. Möller, F.: Ein Kurzverfahren zur Bestimmung der langwelligen Ausstrahlung dicker Atmosphärenschichten. Arch. Met. Geoph. Biokl., A,7, 158–169 (1954).

    Google Scholar 

  8. Philip, J. R.: Evaporation, and Moisture and Heat Fields in the Soil. J. Meteor.14, 354–366 (1957).

    Google Scholar 

  9. Philip, J. R., and D. A. de Vries: Moisture Movement in Porous Materials under Temperature Gradients. Trans. Amer. Geophys. Union38, 222–232 (1957).

    Google Scholar 

  10. Philipps, H.: Zur Theorie des Tagesganges der Temperatur in der bodenahen Atmosphäre und in ihrer Unterlage. Z. Meteorol.16, 5 (1962).

    Google Scholar 

  11. Pilie, R. J., W. J. Eadie, E. J. Mack, C. W. Rogers, and W. C. Kocmond: Project Fog Drops. Part I: Investigation of Warm Fog Drops. Seventh Annual Summary Report, NASW-2126, 106–109 (1972).

  12. Plate, Erich J.: Aerodynamic Characteristics of Atmospheric Boundary Layers. U. S. Atomic Energy Commission, TID-25465, National Technical Information Service, U.S. Dept. of Commerce, Springfield, Virginia 22151, p. 83 (1971).

    Google Scholar 

  13. Richtmeyer, R. D., and K. W. Morton: Difference Methods for Initial Value Problems. New York: Interscience, 403 pp., 1967.

    Google Scholar 

  14. Rocard, Y., and C. R. S. Manders: Thermodynamics. London: Sir Isaac Pitman, 680 pp., 1961.

    Google Scholar 

  15. Sasamori, T.: A Numerical Study of Atmospheric and Soil Boundary Layers. J. Atmos. Sci.,27, 1122–1137 (1970).

    Google Scholar 

  16. Sutton, O. G.: Micrometeorology. New York: McGraw-Hill Book Co., Inc., 333 pp., 1953.

    Google Scholar 

  17. Valley, S. A., ed.: Handbook of Geophysics and Space Environments. New York: McGraw-Hill Book Co., Inc., Chapt. 2, 3 (1965).

    Google Scholar 

  18. Zdunkowski, W. G., and N. D. McQuage: Short-term Effects of Aerosol on the Layer near the Ground in a Cloudless Atmosphere. Tellus24, 238–254 (1972).

    Google Scholar 

  19. Zdunkowski, W. G., J. Paegle and F. K. Fye: The Short-term Influence of Changes in Atmospheric Carbon Dioxide Concentrations on the Temperature Profile in the Boundary Layer. Pure and Appl. Geophys. (in press).

  20. Zdunkowski, W. G., and D. C. Trask: Application of a Radiative-Conductive Model to the Simulation of Nocturnal Temperature Changes over Different Soil Types. J. Appl. Meteor.10, 937–948 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

U. S. Air Force.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdunkowski, W.G., Paegle, J. & Reilly, J.P. The effect of soil moisture upon the atmospheric and soil temperature near the air-soil interface. Arch. Met. Geoph. Biokl. A. 24, 245–268 (1975). https://doi.org/10.1007/BF02245367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245367

Keywords

Navigation