Skip to main content
Log in

Influence of repeated cocaine exposure on the endocrine and behavioral responses to stress in rats

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Previous studies have determined that chronic cocaine exposure inhibits the serotonergic stimulation of hormone secretion. The present experiments were conducted to determine whether the endocrine responses to stress could be a useful approach to assess the influence of cocaine exposure on neuronal function. Male rats received twice daily injections of cocaine (1–15 mg/kg, IP) for 7 days. Animals were subsequently exposed to different stressors, i.e. conditioned emotional stress utilizing a low (0.5 mA) or high (1.5 mA) intensity footshock during training, or to immobilization stress. Immediately after the stress procedures, blood samples were collected for radioimmunoassay of plasma corticosterone, prolactin, and renin concentrations. Repeated cocaine exposure attenuated the stress-induced elevations of corticosterone and prolactin secretion, and attenuated some of the behavioral effects of the low intensity conditioned emotional stress. When exposed to the high intensity conditioned emotional stress, cocaine did not alter the endocrine or behavioral effects of stress. Finally, repeated cocaine exposure modified the immobilization stress-induced elevation of renin secretion; low doses of cocaine (1 or 5 mg/kg) attenuated, while higher doses (10 mg/kg) potentiated the renin response to immobilization stress. Thus, the influence of repeated cocaine exposure on the endocrine and behavioral responses to stress appears to depend upon the type and intensity of the stressor. Compared with previous studies which found altered neuroendocrine responses to serotonin releasers and agonists following cocaine exposure, the hormonal responses to stress are less consistently modified by cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antelman SM, Knopf S, Caggiula AR, Kocan D, Lysle DT, Edwards DJ (1988) Stress and enhanced dopamine utilization in the frontal cortex: The myth and the reality. Ann NY Acad Sci 537:262–272

    PubMed  Google Scholar 

  • Balfagon G, Marin J (1989) Modulation of noradrenaline release from cat cerebral arteries by presynaptic α2-adrenoceptors. Effect of chronic treatment with desipramine and cocaine, Gen Pharmacol 20:289–294

    PubMed  Google Scholar 

  • Beaulieu S, DiPaolo T, Cote J, Barden N (1987) Participation of the central amygdaloid nucleus in the response of adrenocorticotropin secretion to immobilization stress: opposing roles of the noradrenergic and dopaminergic systems. Neuroendocrinology 45:37–46

    PubMed  Google Scholar 

  • Bliss EL, Ailion J, Zwanziger J (1968) Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J Pharmacol Exp Ther 168:258–263

    Google Scholar 

  • Cunningham KA, Paris JM, Goeders NE (1992) Chronic cocaine enhances serotonin autoregulation and serotonin uptake binding. Synapse 11:112–123

    Article  PubMed  Google Scholar 

  • Darmani NA, Martin BR, Glennon RA (1992) Repeated administration of low doses of cocaine enhances the sensitivity of 5-HT2 receptor function. Pharmacol Biochem Behav 41:519–527

    Google Scholar 

  • D'eramo JL, Somoza GM, Kertesz E, Libertun C (1986) Baclofen, A GABA derivative, inhibits stress-induced prolactin release in the rat. Eur J Pharmacol 120:81–85

    Article  PubMed  Google Scholar 

  • Eljarmak D, Charpenet G, Jequier JC, Collu R (1982) Role of midbrain raphe nuclei in stress-, pentobarbital-, beta-endorphin-, or TRH-induced changes in plasma PRL levels of adult male rats. Brain Res Bull 8:149–154

    Article  PubMed  Google Scholar 

  • Farfel GM, Kleven MS, Woolverton WL, Seiden LS, Perry BD (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkeys. Brain Res 578:235–243

    Article  PubMed  Google Scholar 

  • Fuller RW, Snoddy HD (1984) Central dopamine receptors mediating pergolide-induced elevation of serum corticosterone in rats. Characterization by the use of antagonists. Neuropharmacology 23:1389–1394

    Article  PubMed  Google Scholar 

  • Fuxe K, Andersson K, Eneroth P, Siegel RA, Agnati LF (1983) Immobilization stress-induced changes in discrete hypothalamic catecholamine levels and turnover, their modulation by nicotine and relationship to neuroendocrine function. Acta Physiol Scand 117:421–426

    PubMed  Google Scholar 

  • Gibson A, Hart SL, Patel S (1986) Effects of 6-hydroxydopamine-induced lesions of the paraventricular nucleus, and of prazosin, on the corticosterone response to restraint in rats. Neuropharmacology 25:257–260

    Article  PubMed  Google Scholar 

  • Giralt MT, Garcia-Sevilla JA (1989) Acute and long-term regulation of brain α2-adrenoceptors after manipulation of noradrenergic transmission in the rat. Eur J Pharmacol 164:455–466

    Article  PubMed  Google Scholar 

  • Haanwinckel MA, Antunes-Rodrigues J, De Castro e Silva E (1991) Role of central beta-adrenoceptors on stress-induced prolactin release in rats. Horm Metab Res 23:318–320

    PubMed  Google Scholar 

  • Hackenthal E, Paul M, Ganten D, Taugner R (1990) Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70:1067–1116

    PubMed  Google Scholar 

  • Henry DJ, White FJ (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp Ther 258:882–890

    PubMed  Google Scholar 

  • Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Repeated administration. J Pharmacol Exp Ther 251:833–839

    PubMed  Google Scholar 

  • Iimori K, Tanaka M, Kohno Y, Ida Y, Nakagawa R, Hoaki Y, Tsuda A, Nagasaki N (1982) Psychological stress enhances noradrenaline turnover in specific brain regions in rats. Pharmacol Biochem Behav 16:637–640

    Google Scholar 

  • Imperato A, Mele A, Scrocco MG, Puglisi-Allegra S (1992) Chronic cocaine alters limbic extracellular dopamine. Neurochemical basis for addiction. Eur J Pharmacol 212:299–300

    Article  PubMed  Google Scholar 

  • Izenwasser S, Cox BM (1990) Daily cocaine treatment produces a persistent reduction of [3H]dopamine uptake in vitro in rat nucleus accumbens but not in striatum. Brain Res 531:338–341

    Article  PubMed  Google Scholar 

  • Jackson D, Stachowiak MK, Bruno JP, Zigmond MJ (1988) Inhibition of striatal acetylcholine release by endogenous serotonin. Brain Res 457:259–266

    Article  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1988) Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J Neurochem 50:1498–1504

    PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1989) Similar effects of daily cocaine and stress on mesocortical dopamine neurotransmission in the rat. Biol Psychiatry 25:913–928

    Article  PubMed  Google Scholar 

  • Karoum F, Suddath RL, Wyatt RJ (1990) Chronic cocaine and rat brain catecholamines: Long-term reduction in hypothalamic and frontal cortex dopamine metabolism. Eur J Pharmacol 186:1–8

    Article  PubMed  Google Scholar 

  • Keeton TK, Campbell WB (1980) The pharmacologic alteration of renin release. Pharmacol Rev 32:81–227

    PubMed  Google Scholar 

  • Kleven MS, Perry BD, Woolverton WL, Seiden LS (1990) Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain. Brain Res 532:265–270

    Article  PubMed  Google Scholar 

  • Knigge U, Matzen S, Warberg J (1988) Histaminergic mediation of the stress-induced release of prolactin in male rats. Neuroendocrinology 47:68–74

    PubMed  Google Scholar 

  • Kristy-Roy JA, Halter JB, Gordon SM, Smith MJ, Terry LC (1990) Role of the central nervous system in hemodynamic and sympathoadrenal response to cocaine in rats. J Pharmacol Exp Ther 255:154–160

    PubMed  Google Scholar 

  • Le Fur G, Guilloux F, Mitrani N, Miazoule J, Uzan A (1979) Relationship between plasma corticosteroids and benzodiazepines in stress. J Pharmacol Exp Ther 211:305–308

    PubMed  Google Scholar 

  • Levy AD, Li Q, Alvarez Sanz MC, Rittenhouse PA, Brownfield MS, Van de Karl LD (1992a) Repeated cocaine modifies the neuroendocrine responses to the serotonin 5-HT1C/5-HT2 agonist DOI. Eur J Pharmacol 221:121–127

    Article  PubMed  Google Scholar 

  • Levy AD, Rittenhouse PA, Li Q, Bonadonna AM, Alvarez Sanz MC, Kerr JE, Bethea CL, Van de Kar LD (1992b) Repeated injections of cocaine inhibit the serotonergic regulation of prolactin and renin secretion in rats. Brain Res 580:6–11

    Article  PubMed  Google Scholar 

  • Lien EL, Morrison A, Kassarich J, Sullivan D (1986) Alpha-2-adrenergic control of prolactin release. Neuroendocrinology 44:184–189

    PubMed  Google Scholar 

  • Lim DK, Yu ZJ, Hoskins B, Rockhold RW, Ho IK (1990) Effects of acute and subacute cocaine administration on the CNS dopaminergic system in wistar-kyoto and spontaneously hypertensive rats: II. Dopamine receptors. Neurochem Res 15:621–627

    Article  PubMed  Google Scholar 

  • Lorens SA, Van de Kar LD (1987) Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology 45:305–310

    PubMed  Google Scholar 

  • Maccari S, Le Moal M, Angelucci L, Mormede P (1990) Influence of 6-OHDA lesion of central noradrenergic systems on corticosteroid receptors and neuroendocrine responses to stress. Brain Res 533:60–65

    Article  PubMed  Google Scholar 

  • Onaka T, Yagi K (1990) Differential effects of naloxone on neuroendocrine responses to fear-related emotional stress. Exp Brain Res 81:53–58

    Article  PubMed  Google Scholar 

  • Parsons LH, Smith AD, Justice JBJ (1991) Basal extracellular dopamine is decreased in the rat nucleus accumbens during abstinence from chronic cocaine. Synapse 9:60–65

    Article  PubMed  Google Scholar 

  • Pitts DK, Marwah J (1988) Cocaine and central monoaminergic neurotransmission: A review of electrophysiological studies and comparison to amphetamine and antidepressants. Life Sci 42:949–968

    Article  PubMed  Google Scholar 

  • Plotsky PM, Cunningham ET,Jr., Widmaier EP (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocrinol Rev 10:437–458

    Google Scholar 

  • Richardson Morton KD, Van de Kar LD, Brownfield MS, Lorens SA, Napier TC, Urban JH (1990) Stress-induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus. Neuroendocrinology 51:320–327

    PubMed  Google Scholar 

  • Rittenhouse PA, Bakkum EA, O'Connor PA, Carnes M, Bethea CL, Van de Kar LD (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res 580:205–214

    Article  PubMed  Google Scholar 

  • Robertson MW, Leslie CA, Bennett JPJ (1991) Apparent synaptic dopamine deficiency induced by withdrawal from chronic cocaine treatment. Brain Res 538:337–339

    Article  PubMed  Google Scholar 

  • Ross SB, Renyi AL (1966) Uptake of some tritiated sympathomimetic amines by mouse brain cortex slices in vitro. Acta Pharmacol Toxicol 24:297–309

    Google Scholar 

  • Ross SB, Renyi AL (1967) Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur J Pharmacol 2:181–186

    Article  PubMed  Google Scholar 

  • Ross SB, Renyi AL (1969) Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur J Pharmacol 7:270–277

    Article  PubMed  Google Scholar 

  • Serrano A, D'Angio M, Scatton B (1989) NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens. Eur J Pharmacol 162:157–166

    Article  PubMed  Google Scholar 

  • Shimizu N, Tetsuro S, Hori T, Oomura Y (1992) In vivo measurement of hypothalamic serotonin release by intracerebral microdialysis: Significant enhancement by immobilization stress in rats. Brain Res Bull 28:727–734

    Article  PubMed  Google Scholar 

  • Szafarczyk A, Alonso G, Ixart G, Malaval F, Assenmacher I (1985) Diurnal-stimulated and stress-induced ACTH release in rats is mediated by ventral noradrenergic bundle, Am J Physiol 249:E219-E226

    PubMed  Google Scholar 

  • Tanaka M, Kohno Y, Nakagawa R, Ida Y, Takeda S, Nagasaki N (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem Behav 16[2]: 315–319

    Google Scholar 

  • Taylor D, Ho BT (1977) Neurochemical effects of cocaine following acute and repeated injection. J Neurosci Res 3:95–101

    Article  PubMed  Google Scholar 

  • Thierry AM, Jovey F, Glowinski J, Kety SS (1968) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system in the rat I. Modifications of norepinephrine turnover. J Pharmacol Exp Ther 163:163–171

    PubMed  Google Scholar 

  • Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37:249–332

    PubMed  Google Scholar 

  • Urban JH, Van de Kar LD, Lorens SA, Bethea CL (1986) Effect of the anxiolytic drug buspirone on prolactin and corticosterone secretion in stressed and unstressed rats. Pharmacol Biochem Behav 25:457–462

    Google Scholar 

  • Van de Karl LD (1991) Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Annu Rev Pharmacol Toxicol 31:289–320

    PubMed  Google Scholar 

  • Van de Kar LD, Bethea CL (1982) Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphe nucleus. Neuroendocrinology 35:225–230

    PubMed  Google Scholar 

  • Van de Kar LD, Lorens SA, Urban JH, Richardson KD, Paris J (1985a) Pharmacological studies on stress-induced renin and prolactin secretion: effects of benzodiazepines, naloxone, propranolol and diisopropylfluorophosphate (DFP). Brain Res 345:257–263

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Urban JH, Lorens SA, Richardson KD (1985b) The non-benzodiazepine anxiolytic buspirone inhibits stress-induced renin secretion and lowers heart rate. Life Sci 36:1149–1155

    Article  PubMed  Google Scholar 

  • Van de Kar LD, Urban JH, Richardson KD, Bethea CL (1985c) Fenfluramine causes elevation in plasma prolactin levels via a serotonergic mechanism but causes elevation in plasma corticosterone levels via a mechanism that is independent of serotonin. Neuroendocrinology 41:283–288

    PubMed  Google Scholar 

  • Van de Kar LD, Richardson Morton KD, Rittenhouse PA (1991) Stress: neuroendocrine and pharmacological mechanisms. In: Jasmin G, Cantin M (eds), Stress Revisited. 1. Neuroendocrinology of stress. Methods and achievements in experimental pathology. Karger, Basel, pp 133–173

    Google Scholar 

  • Van de Kar LD, Bonadonna AM, Rittenhouse PA, Kerr JE, Levy AD, Iyer L, Herbert GB, Alvarez Sanz MC, Lent SJ, Carnes M (1992) Prior chronic exposure to cocaine inhibits the serotonergic stimulation of ACTH and corticosterone secretion. Neuropharmacology 31:169–175

    Article  PubMed  Google Scholar 

  • Yang X-M, Gorman AL, Dunn AJ, Goeders NE (1992) Anxiogenic effects of acute and chronic cocaine administration: neurochemical and behavioral studies. Pharmacol Biochem Behav 41:643–650

    Article  PubMed  Google Scholar 

  • Yi S-J, Johnson KM (1990a) Chronic cocaine treatment impairs the regulation of synaptosomal3H-DA release by D2 autoreceptors. Pharmacol Biochem Behav 36:457–461

    Google Scholar 

  • Yi S-J, Johnson KM (1990b) Effects of acute and chronic administration of cocaine on striatal uptake, compartmentalization and release of [3H]dopamine. Neuropharmacology 29:475–486

    Article  PubMed  Google Scholar 

  • Zeigler S, Lipton J, Toga A, Ellison G (1991) Continuous cocaine administration produces persisting changes in brain neurochemistry and behavior. Brain Res 552:27–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, A.D., Rittenhouse, P.A., Li, Q. et al. Influence of repeated cocaine exposure on the endocrine and behavioral responses to stress in rats. Psychopharmacology 113, 547–554 (1994). https://doi.org/10.1007/BF02245238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245238

Key words

Navigation