Skip to main content
Log in

Effect of hypothalamic and peripheral fluoxetine injection on natural patterns of macronutrient intake in the rat

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effect of the serotonin (5-HT) reuptake inhibitor, fluoxetine (FLU), on nutrient intake was examined in rats given free access to three pure macronutrient diets (protein, carbohydrate and fat). Fluoxetine was administered either peripherally or directly into the hypothalamic paraventricular nucleus (PVN) at three different times of the rats' nocturnal cycle. Using a range of doses for IP (0.6–10 mg/kg) and PVN injection (3.2–100 nmol), FLU exerted a selective, dose-dependent suppression (−20% to −60%) of carbohydrate intake only during the first hour of the dark. No change in the consumption of protein or fat was observed. This suppressive effect in the early dark period was not observed during the late dark phase, after either IP or PVN administration. In animals with brain cannulae aimed at different hypothalamic nuclei, the nutrient-suppressive effect of FLU was found to be localized to the medial hypothalamic nuclei, namely, the ventromedial, dorsomedial and suprachiasmatic nuclei, in addition to the PVN. These results, along with other published work, support a role for hypothalamic 5-HT systems in the control of nutrient intake in a circadian-related manner and in mediating the central action of the anorectic compound FLU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antelman SM, Rowland N, Kocan C (1981) Anorectics: lack of cross tolerance among serotonergic drugs and sensitization of amphetamine's effect. In: Garattini S, Samanin R (eds) Anorectic agents: mechanisms of action and tolerance. Raven Press, New York, pp 45–62

    Google Scholar 

  • Auerbach SB, Minzenberg MJ, Wilkinson LO (1989) Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 499:281–290

    Article  PubMed  Google Scholar 

  • Baker BJ, Booth DA (1990) Effects ofdl-fenfluramine on dextrin and casein intakes influenced by textural preferences. Behav Neurosci 104:153–159

    Article  PubMed  Google Scholar 

  • Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite 7:39–56

    PubMed  Google Scholar 

  • Blundell JE, Hill AJ (1987) Nutrition, serotonin and appetite: case study in the evolution of a scientific idea. Appetite 8:183–194

    Article  PubMed  Google Scholar 

  • Borroni E, Ceci A, Garattini S, Mennini T (1983) Differences betweend-fenfluramine andd-norfenfluramine in serotonin presynaptic mechanisms. J Neurochem 40:891–893

    PubMed  Google Scholar 

  • Brennan G, Shor-Posner G, Ian C, Jasaitis R, Eyih P, Madhu K, Leibowitz SF (1988) Nutrient composition: effects on temporal patterns of feeding. Soc Neurosci Abstr 14:531

    Google Scholar 

  • Carroll M, Lac ST, Asencio M, Kragh R (1990) Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav 35:237–244

    Article  PubMed  Google Scholar 

  • Carruba MO, Ricciardi S, Spano P, Mantegazza P (1985) Dopaminergic and serotoninergic anorectics differentially antagonize insulin- and 2-DG-induced hyperphagia. Life Sci 36:1739–1749

    Article  PubMed  Google Scholar 

  • Clifton PG, Barnfield AMC, Philcox L (1989) A behavioural profile of fluoxetine-induced anorexia. Psychopharmacology 97:89–95

    Article  PubMed  Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990a) Fluoxetine reduces food intake by a cholecystokinin-independent mechanism. Pharmacol Biochem Behav 35:51–54

    Article  PubMed  Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990b) Reversal of the anorectic effect of (+)-fenfluramine in the rat by the selective cholecystokinin receptor antagonist MK-329. Br J Pharmacol 99:65–70

    PubMed  Google Scholar 

  • Curtis-Prior PB, Prouteau M (1983) Qualitative and quantitative effects of fenfluramine and tiflorex on food consumption in trained rats offered dietary choices. Int J Obes 7:575–581

    PubMed  Google Scholar 

  • Faradji H, Cespuglio R, Jouvet M (1983) Voltammetric measurements of 5-hydroxyindole compounds in the suprachiasmatic nuclei: circadian fluctuations. Brain Res 279:111–119

    Article  PubMed  Google Scholar 

  • Fuller RW, Perry KW, Molloy BB (1974) Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140). Life Sci 15:1161–1171

    Article  PubMed  Google Scholar 

  • Fuller RW, Wong DT (1989) Fluoxetine: a serotonergic appetite suppressant drug. Drug Dev Res 17:1–15

    Article  Google Scholar 

  • Garattini S, Buczko W, Jori A, Samanin R (1975) The mechanism of action of fenfluramine. Postgrad Med J 51 [suppl 1]:27–35

    Google Scholar 

  • Garattini S, Mennini T, Bendotti C, Invernizzi R, Samanin R (1986) Neurochemical mechanism of action of drugs which modify feeding via the serotoninergic system. Appetite 7:15–38

    PubMed  Google Scholar 

  • Goudie AJ, Thornton EW, Wheeler TJ (1976) Effects of lilly 110140, a specific inhibitor of 5-hydroxytryptamine uptake, on food intake and on 5-hydroxytryptophan-induced anorexia. Evidence for serotoninergic inhibition of feeding. J Pharm Pharmacol 28:318–320

    PubMed  Google Scholar 

  • Guan XM, McBride WJ (1988) Fluoxetine increases the extracellular levels of serotonin in the nucleus accumbens. Brain Res Bull 21:43–46

    Article  PubMed  Google Scholar 

  • Hery M, Faudon M, Dusticier G, Hery F (1982) Daily variations in serotonin metabolism in the suprachiasmatic nucleus of the rat: influence of oestradiol impregnation. J Endocrinol 94:157–166

    PubMed  Google Scholar 

  • Hirsch JA, Goldberg S, Wurtman RJ (1982) Effect of (+)-or (−)-enantiomers of fenfluramine or norfenfluramine on nutrient selection by rats. J Pharm Pharmacol 34:18–21

    PubMed  Google Scholar 

  • Kanarek RB (1987) Neuropharmacological approaches to studying diet selection. In: Kaufman S (ed) Amino acids in health and disease: new perspectives. Liss, New York, pp 383–401

    Google Scholar 

  • Kim SH, Wurtman RJ (1988) Selective effects of CGS 10686B,dl-fenfluramine or fluoxetine on nutrient selection. Physiol Behav 42:319–322

    Article  PubMed  Google Scholar 

  • Leander JD (1987) Fluoxetine suppresses palatability-induced ingestion. Psychopharmacology 91:285–287

    Article  PubMed  Google Scholar 

  • Leibowitz SF, Weiss GF, Yee F, Tretter JB (1985) Noradrenergic innervation of the paraventricular nucleus: specific role in control of carbohydrate ingestion. Brain Res Bull 14:561–567

    Article  PubMed  Google Scholar 

  • Leibowitz SF, Weiss GF, Shor Posner G (1988) Hypothalamic serotonin: pharmacological, biochemical, and behavioral analyses of its feeding-suppressive action. Clin Neuropharmacol 11:S51–S71.

    Google Scholar 

  • Leibowitz SF, Weiss GF, Walsh UA, Viswanath D (1989) Medial hypothalamic serotonin: role in circadian patterns of feeding and macronutrient selection. Brain Res 503:132–140

    Article  PubMed  Google Scholar 

  • Leibowitz SF, Shor-Posner G, Weiss GF (1990a) Serotonin in medial hypothalamic nuclei controls circadian patterns of macronutrient intake. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM (eds) Serotonin: from cell biology to pharmacology and therapeutics. Kluver Academic, Dordrecht, pp 203–211

    Google Scholar 

  • Leibowitz SF, Weiss GF, Suh JS (1990b) Medial hypothalamic nuclei mediate serotonin's inhibitory effect on feeding behavior. Pharmacol Biochem Behav 37:735–742

    Article  PubMed  Google Scholar 

  • Leibowitz SF, Jhanwar-Uniyal M (1990c) 5-HT1A and 5-HT1B receptor binding sites in discrete hypothalamic nuclei: relation to circadian rhythm and gender. Soc Neurosci Abstr 16:294

    Google Scholar 

  • Li ET, Anderson GH (1984) 5-Hydroxytryptamine: a modulator of food composition but not quantity. Life Sci 34:2453–2460

    Article  PubMed  Google Scholar 

  • Luo S, Li ETS (1990) Food intake and selection pattern of rats treated with dexfenfluramine, fluoxetine and ru24969. Brain Res Bull 24:729–733

    Article  PubMed  Google Scholar 

  • Martin KF, Marsden CA (1985) In vivo diurnal variations of 5-HT release in hypothalamic nuclei. In: Redfern PH, Campbell IC, Davies JA, Martin KF (eds) Circadian rhythms in the central nervous system. Macmillan, London, pp 81–92

    Google Scholar 

  • McArthur RA, Blundell JE (1983) Protein and carbohydrate self-selection: modification of the effects of fenfluramine and amphetamine by age and feeding regimen. Appetite 4:113–124

    PubMed  Google Scholar 

  • Mennini T, Borroni E, Samanin R, Garattini S (1981) Evidence of the existence of two different intraneuronal pools from which pharmacological agents can release serotonin. Neurochem Int 3:289–294

    Article  Google Scholar 

  • Mennini T, Garattini S, Caccia S (1985) Anorectic effect of fenfluramine isomers and metabolites: relationship between brain levels and in vitro potencies on serotonergic mechanisms. Psychopharmacology 85:111–114

    Article  PubMed  Google Scholar 

  • Meyer DC, Quay WB (1976) Hypothalamic and suprachiasmatic uptake of serotonin in vitro: twenty-four-hour changes in male and proestrous female rats. Endocrinology 98:1160–1165

    PubMed  Google Scholar 

  • Moses PL, Wurtman RJ (1984) The ability of certain anorexic drugs to suppress food consumption depends on the nutrient composition of the test diet. Life Sci 35:1297–1300

    Article  PubMed  Google Scholar 

  • Orthen-Gambill N, Kanarek RB (1982) Differential effects of amphetamine and fenfluramine on dietary self-selection in rats. Pharmacol Biochem Behav 16:303–309

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Rogacki N, Weiss GF, Fueg A, Suh JS, Pal S, Stanley BG, Wong DT, Leibowitz SF (1989) Impact of hypothalamic serotonin on macronutrient intake. Ann NY Acad Sci 575:619–621

    Google Scholar 

  • Rowland NE, Antelman SM, Kocan D (1982) Differences among “serotonergic” anorectics in a cross- tolerance paradigm: do they all act on serotonin systems? Eur J Pharmacol 81:57–66

    Article  PubMed  Google Scholar 

  • Rowland NE, Carlton J (1988) Dexfenfluramine: effects on food intake in various animal models. Clin Neuropharmacol 11:S33-S50

    PubMed  Google Scholar 

  • Schwartz D, Hernandez L, Hoebel BG (1989) Fenfluramine administered systemically or locally increases extracellular serotonin in the lateral hypothalamus as measured by microdialysis. Brain Res 482:261–270

    Article  PubMed  Google Scholar 

  • Shor Posner G, Grinker JA, Marinescu C, Brown O, Leibowitz SF (1986) Hypothalamic serotonin in the control of meal patterns and macronutrient selection. Brain Res Bull 17:663–671

    Article  PubMed  Google Scholar 

  • Stanley BG, Schwartz DH, Hernandez L, Leibowitz SF, Hoebel BG (1989) Patterns of extracellular 5-hydroxyindoleacetic acid (5-HIAA) in the paraventricular hypothalamus (PVN): relation to circadian rhythm and deprivation-induced eating behavior. Pharmacol Biochem Behav 33:257–260

    Article  PubMed  Google Scholar 

  • Tempel DL, Shor Posner G, Dwyer D, Leibowitz SF (1989) Nocturnal patterns of macronutrient intake in freely feeding and food-deprived rats. Am J Physiol 256:R541–R548

    PubMed  Google Scholar 

  • Weiss GF, Papadakos P, Knudson K, Leibowitz SF (1986) Medial hypothalamic serotonin: effects on deprivation and norepinephrine-induced eating. Pharmacol Biochem Behav 25:1223–1230

    Article  PubMed  Google Scholar 

  • Weiss GF, Rogacki N, Fueg A, Buchen D, Leibowitz SF (1990) Impact of hypothalamicd-norfenfluramine and peripherald-fenfluramine injection on macronutrient intake in the rat. Brain Res Bull 25:849–859

    Article  PubMed  Google Scholar 

  • Wong DT, Horng JS, Bymaster FP, Hauser KL, Molloy BB (1974) A selective inhibitor of serotonin uptake: lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci 15:471–479

    Article  PubMed  Google Scholar 

  • Wong DT, Bymaster FP, Horng JS, Molloy BB (1975) A new selective inhibitor for uptake of serotonin in synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther 193:804–811

    PubMed  Google Scholar 

  • Wong DT, Reid LR, Bymaster FP, Threlkeld PG (1985) Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors. J Neural Transm 64:251–269

    Article  PubMed  Google Scholar 

  • Wong DT, Reid LR, Threlkeld PG (1988) Suppression of food intake in rats by fluoxetine: comparison of enantiomers and effects of serotonin antagonists. Pharmacol Biochem Behav 31:475–479

    Article  PubMed  Google Scholar 

  • Wurtman JJ, Wurtman RJ (1977) Fenfluramine and fluoxetine spare protein consumption while suppressing caloric intake. Science 198:1178–1180

    PubMed  Google Scholar 

  • Wurtman JJ, Wurtman RJ (1979) Drugs that enhance central serotonergic transmission diminish elective carbohydrate consumption by rats. Life Sci 24:895–904

    Article  PubMed  Google Scholar 

  • Yen TT, Wong DT, Bemis KG (1987) Reduction of food consumption and body weight of normal and obese mice by chronic treatment with fluoxetine: a serotonin reuptake inhibitor. Drug Dev Res 10:37–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, G.F., Rogacki, N., Fueg, A. et al. Effect of hypothalamic and peripheral fluoxetine injection on natural patterns of macronutrient intake in the rat. Psychopharmacology 105, 467–476 (1991). https://doi.org/10.1007/BF02244365

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02244365

Key words

Navigation