Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia

Abstract

The development of effective drugs for the treatment of dementia is an important therapeutic target. Drugs which stop the progression of dementia have not been developed; however, nootropics and metabolically active compounds such as the vinca alkaloids and the ergot alkaloids as well as alkylxanthines are widely used to alleviate the symptoms. This review summarises animal studies investigating the mechanism of action of these compounds and highlights gaps in our knowledge of their pharmacology. Nootropics, such as piracetam, facilitate learning and retrieval of information and protect the brain from physical and chemical intoxication. Nootropics may produce these effects via an enhancement of acetylcholine or dopamine release; however, this postulate requires further evaluation. The pharmacology of vinca alkaloids is reviewed with particular reference to vinpocetine. This compound attenuates cognitive deficits, reduces ischaemia-induced hippocampal cell loss and increases cerebral blood flow and glucose utilisation. These effects may be induced by modulation of cyclic nucleotide levels and adenosine re-uptake inhibition. An extensively examined ergot alkaloid is co-dergocrine; this compound increases both the oxygen tension and the electrical activity of the ischaemic cerebral cortex. Alkylxanthines have a wide range of pharmacological activities, and in this review the pharmacology of pentoxifylline, propentofylline and denbufylline is contrasted with that of theophylline and caffeine. In particular, the pharmacology of propentofylline and the selective lowK m cyclic AMP phosphodiesterase inhibitor denbufylline is summarised. Although more carefully controlled clinical trials in well defined patient collectives are required, present evidence suggests some therapeutic efficacy for nootropics and metabolically active compounds. Further studies to more closely evaluate their mechanism of action may lead to the development of more effective agents for the therapy of dementia.

This is a preview of subscription content, log in to check access.

References

  1. Abrams TW, Kandel ER (1988) Is contiguity detection in classical conditioning a system or a cellular property? Learning in aplysia suggests a possible molecular site. Trends Neurosci 11:128–135

    Google Scholar 

  2. American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd edn. APA, Washington DC

    Google Scholar 

  3. Anderson DM, Drummond L, McKeown P (1986) Comparative effects of vinpocetine, Hydergine, flunarizine and verapamil on blood vessels and resistance to cerebral hypoxia. In: Krieglstein J (ed) Pharmacology of cerebral ischaemia. Elsevier, Amsterdam, pp 340–344

    Google Scholar 

  4. Angersbach D, Ochlich P (1984) The effect of 7-(2′-oxopropyl)-1,3-di-n-butyl-xanthine (BRL 30892) on ischaemic skeletal muscle\(Po_2 \), pH and contractility in cats and rats. Arzneimittelforschung 34:1274–1278

    Google Scholar 

  5. Aviado DM, Porter JM (1984) Pentoxifylline: a new drug for the therapy of intermittent claudication. Pharmacotherapy 4:297–307

    Google Scholar 

  6. Balestreri R, Fontana L, Astengo F (1987) A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriat Soc 35:425–430

    Google Scholar 

  7. Banfi S, Dorigotti L (1984) Experimental behavioral studies with oxiracetam on different types of chronic cerebral impairment. Clin Neuropharmacol [Suppl 1] 7:768–769

    Google Scholar 

  8. Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Google Scholar 

  9. Battig K, Buzzi R, Martin JR, Feierabend JM (1984) The effects of caffeine on physiological functions and mental performance. Experientia 40:1218–1222

    Google Scholar 

  10. Beavo JA (1988) Multiple isoenzymes of cyclic nucleotide phosphodiesterase. In: Greengard P, Robison GA (eds) Advances in second messenger and protein phosphorylation research vol 22. Raven Press, New York, pp 1–38

    Google Scholar 

  11. Beck T, Vogg P, Krieglstein J (1988) Uncoupling of cerebral blood flow and glucose utilization by dihydroergocristine in the conscious rat. Naunyn-Schmiedeberg's Arch Pharmacol 338:82–87

    Google Scholar 

  12. Blaha L, Erzigkeit H, Adamczyk A, Freytag S, Schaltenbrand R (1989) Clinical evidence of the effectiveness of vinpocetine in the treatment of organic psychosyndrome. Human Psychopharmacol 4:103–111

    Google Scholar 

  13. Bowen DM, Smith CB, White P, Davidson AW (1976) Neurotransmitter related enzymes and indices of hypoxia in senila dementia and other abiatrophies. Brain 99:459–496

    Google Scholar 

  14. Bruns RF, Lu GH, Pugsley TA (1986) Characterisation of the A2 adenosine receptor labelled by [3H] NECA in rat cortical membranes. Mol Pharmacol 29:331–346

    Google Scholar 

  15. Butcher RW, Sutherland EW (1962) Adenosine 3′,5′ phosphate in biological materials. J Biochem 237:1244–1250

    Google Scholar 

  16. Butler DE, Nordin IC, L'Italien JL, Zweister L, Poschel PH, Marriot JG (1984) Amnesia-reversal activity of a series of N-[disubstituted-amino)alkyl]-2-oxo-1-pyrrolidineacetamides, including pramiracetam. Med Chem 27:684–691

    Google Scholar 

  17. Caravaggi AM, Sardi A, Baldoli GF, De Francesco CF, Luca C (1977) Hemodynamic profile of a new cerebral vasodilator, vincamine and of one of its derivatives. Apovincaminic acid ethylester (RGH-4405). Arch Int Pharmacodyn Ther 226:139–148

    Google Scholar 

  18. Carney JM (1982) Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol 75:451–454

    Google Scholar 

  19. Cartheuser CF (1988) Slow channel inhibitor effects on brain function: tolerance to severe hypoxia in the rat. Br J Pharmacol 95:903–913

    Google Scholar 

  20. Challiss RAJ, Nicholson CD (1988) Effects of selective phosphodiesterase inhibitors on cyclic AMP hydrolysis in rat cerebral cortical slices. Br J Pharmacol 99:553P

    Google Scholar 

  21. Chang KH (1985) A pharmacological study on drugs acting on cerebral circulatory dynamics — effects of vinpocetine on brain monoamines in rats a vincamine derivative. Tokyo Ika Kaigahu Zasshi 43:207–220

    Google Scholar 

  22. Chouinard G, Annable L, Ross-Chouinard A, Oliver M, Fontaine F (1983) Piracetam in elderly psychiatric patients with mild diffuse cerebral impairment. Psychopharmacology 81:100–106

    Google Scholar 

  23. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain — focus on NMDA receptors. Trends Neurosci 10:263–265

    Google Scholar 

  24. Collingridge GL, Bliss TVP (1987) NMDA receptors — their role in long term potentiation. Trends Neurosci 10:288–293

    Google Scholar 

  25. Cumin R, Bandle EF, Gamzu E, Haefely WE (1982) Effects of the novel compound aniracetum (Ro 13-5057) upon impaired learning and memory in rodents. Psychopharmacology 78:104–111

    Google Scholar 

  26. Daly JW, Bruns RF, Snyder SH (1981) Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci 28:2083–2097

    Google Scholar 

  27. Davis CW (1984) Assessment of selective inhibition of rat cerebral cortical calcium-independent and calcium-dependent phosphodiesterase in crude extracts using deoxycyclic AMP and potassium ions. Biochem Biophys Acta 797:354–362

    Google Scholar 

  28. De Leo J, Toth L, Schubert P, Rudolphi K, Kreutzberg GW (1987) Ischaemia-induced neuronal cell death, calcium accumulation and glial response in the hippocampus of the mongolian gerbil and protection by propentofylline (HWA 285). J Cereb Blood Flow Metabol 7:745–751

    Google Scholar 

  29. De Noble V, Repetti SJ, Gelpke LW, Wood LM, Keim KL (1986) Vinpocetine: Nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacol Biochem Behav 24:1123–1128

    Google Scholar 

  30. Dragunow M (1986) Adenosine: the brain's natural anticonvulsant. TIPS 128–130

  31. Drugan RC, Maier SF, Skolnick P, Paul SM, Crawley JN (1985) An anxiogenic benzodiazipine receptor ligand induces learned helplessness. Eur J Pharmacol 113:453–457

    Google Scholar 

  32. Duckles SP, Bevan JA (1976) Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vivo. J Pharmacol Exp Ther 197:371–378

    Google Scholar 

  33. Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability. Naunyn-Schmiedeberg's Arch Pharmacol 316:326–330

    Google Scholar 

  34. Dutow AA, Tolpyschew BA, Karpow WN, Petrow AP (1986) The influence of Cavinton on drug-induced convulsions. Farmakol Toksikol 49:22–24

    Google Scholar 

  35. Eckmann F, Fichte R, Meya U, Sastre-Y-Hernandez (1988) Rolipram in major depression: results of a double-blind comparison study with amityptiline. Curr Ther Res 43:291–295

    Google Scholar 

  36. Edvinsson L, Owman C (1974) Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res 35:835–849

    Google Scholar 

  37. Erren RA, Groswald DE, Luttges MW (1976) Triethyl-tin toxicity as a model for degenerative disorders. Pharmacol Biochem Behav 5:299–307

    Google Scholar 

  38. Enz A, Iwangoff P, Chappuis A (1978) The influence of dihydroergotoxine mesylate on the low-K m phosphodiesterase of cat and rat brain in vitro. Gerontology [Suppl 1] 24:115–125

    Google Scholar 

  39. Erzigkeit H (1977) Manual zum Syndrom-Kurztest, Formen A-E, Vless Verlags Gesellschaft Vatersbetten

  40. Fenzyl E, Apecechea R, Schaltenbrand R, Friedel R (1986) Long-term study concerning tolerance and efficacy of vinpocetine in elderly patients suffering from a mild to moderate organic psychosyndrome. In: Bes A (ed) Senile dementias: early detection. Libbey Eurotext, pp 580–585

  41. Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD (1988) Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 34:506–519

    Google Scholar 

  42. Fredholm BB, Lindgren E, Lindstrom L, Vernet L (1983) The effects of some drugs with purported antianoxic effect in veratridine-induced purine release from isolated rat hypothalamic synaptasomes. Acta Pharmacol Toxicol 52:236–244

    Google Scholar 

  43. Funk KF, Schmidt J (1984) Changes of dopamine metabolism by hypoxia and effect of nootropic drugs. Biomed Biochem Acta 11:1301–1304

    Google Scholar 

  44. Gaitz CM, Varner RV, Overall JT (1977) Pharmacotherapy for organic brain syndrome in late life. Evaluation of an ergot derivative versus placebo. Arch Int Gen Psychiatry 34:839–845

    Google Scholar 

  45. Giurgea CE (1982) The nootropic concept and its prospective implications. Drug Dev Res 2:441–446

    Google Scholar 

  46. Giurgea CE, Moyersoons FE (1972) On the pharmacology of cortical evoked potentials. Arch Int Pharmacodyn 199:67–78

    Google Scholar 

  47. Giurgea CE, Salama M (1977) Nootropic drugs. Prog Neuro-Psychopharmacol 1:235–247

    Google Scholar 

  48. Goelet P, Castellucci UF, Schacher SG, Kandel ER (1986) The long and the short of long term memory — a molecular framework. Nature 322:419–422

    Google Scholar 

  49. Gottstein U, Paulson OB (1972) The effect of intra carotid aminophylline infusion on the cerebral circulation. Stroke 3:560–565

    Google Scholar 

  50. Grome JJ, Stefanovich V (1986) Differential effects of methylxanthines on local cerebral blood flow and glucose utilization in the conscious rat. Naunyn-Schmiedeberg's Arch Pharmacol 333:172–177

    Google Scholar 

  51. Gray R, Johnston D (1987) Noradrenaline andβ-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327:620–622

    Google Scholar 

  52. Gygax P, Wiensperger N (1983) Hypotension induced changes in cerebral microflow and EEG and their pharmacological alteration. Acta Med Scand [Suppl 678]:29–36

    Google Scholar 

  53. Gygax P, Meier-Ruge W, Schulz U, Enz A (1976) Experimental studies on the action of metabolic and vasoactive substances in the obligaemically disturbed brain. Arzneimittelforschung 26:1245–1246

    Google Scholar 

  54. Hachinski VC, Lassen NA, Marshall J (1974) Multi-infarct dementia: a cause of mental deterioration in the elderly. Lancet II:207–210

    Google Scholar 

  55. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GM, McAllister VL, Marshall J, Ross-Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637

    Google Scholar 

  56. Hagan JJ, Morris RGM (1988) The cholinergic hypothesis of memory: a review of animal experiments. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 20. Plenum Press, New York

    Google Scholar 

  57. Hagiwara M, Endo T, Hidaka H (1984) Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 33:453–457

    Google Scholar 

  58. Hasegawa K, Homma A, Imai Y (1986) An epidemiological study of age-related dementia in the community. Int J Geriat Psychiatry 1:45–55

    Google Scholar 

  59. Heiss WD, Podreka I (1981) Die Wirkung von Vinpocetin auf die regionale Hirndurchblutung bei Patienten mit chronisch-Zerebrova skulaffen Erkrankungen mit der intravenosen Xenon-clearance-methode. Report for Thiemann Pharmaceuticals

  60. Hidaka H, Endo T (1984) Selective inhibitors of three forms of cyclic nucleotide phosphodiesterase — basic and potential clinical applications. Advances in Cyclic Nucleotide and Protein Phosphorylation Research 16:245–259

    Google Scholar 

  61. Hinze H-J (1972) Zur Pharmakokinetik von 3,7-dimethyl-1-(5-oxo-hexyl)-xanthine (BRL 191) am Menschen. Arzneimittelforschung 22:1492–1495

    Google Scholar 

  62. Hollander E, Mohs RC, Davis KL (1986) Cholinergic approaches to the treatment of Alzheimer's disease. Br Med Bull 42:97–100

    Google Scholar 

  63. Hollister LE (1985) Alzheimer's disease is it worth treating? Drugs 29:483–488

    Google Scholar 

  64. Hossmann KA (1982) Treatment of experimental cerebral ischemia. J Cerebral Blood Flow Metabol 2:275–297

    Google Scholar 

  65. Hudlicka O, Komarek J, Wright AJA (1981) The effect of an xanthine derivative, 1-(5-oxohexyl)-3-methyl-7-propylxanthine (HWA 285), on heart performance and regional blood flow in dogs and rabbits. Br J Pharmacol 72:723–730

    Google Scholar 

  66. Imamoto T, Tanabe M, Shimamoto N, Kawazoe K, Hirata M (1984) Cerebral circulatory and cardiac effects of vinpocetine and its metabolite, apovincaminic acid, in anaesthetized dogs. Arzneimittelforschung 34:161–169

    Google Scholar 

  67. Ineichen B (1987) Measuring the rising tide — how many dementia cases will there be by 2001. Br J Psychiatry 150:193–200

    Google Scholar 

  68. Iversen SD (1977) Brain dopamine systems and behaviour. Handbook of Psychopharmacology vol 8. Plenum Press, New York, pp 333–385

    Google Scholar 

  69. Jordan R, Souness JE (1989) Comparison of the relaxant actions of MCB 229 48 MY-5445, vinpocetine and 1-methyl-3, isobutyl-8-(methylamino) xanthine. Br J Pharmacol 96:227P

    Google Scholar 

  70. Jukna JJ, Nicholson CD (1987) The effect of denbufylline on the viscosity of rat whole blood and on the deformability (filterability) of rat blood cell suspensions. Naunyn-Schmiedeberg's Arch Pharmacol 335:445–448

    Google Scholar 

  71. Karpati E, Szporny L (1976) General and cerebral haemodynamic activity of ethyl apovincaminate. Arzneimittelforschung 26:1908–1911

    Google Scholar 

  72. Kehr W, Debus G, Neumeister R (1985) Effects of rolipram, a novel antidepressant on monoamine metabolism in rat brain. J Neurol Transm 63:1–12

    Google Scholar 

  73. Keim KL, Hall PC (1987) General neuropharmacology of vinpocetine: a putative cerebral activator. Drug Dev Res 11:107–115

    Google Scholar 

  74. King GA (1987a) Protection against hypoxia-induced lethality in mice: comparison of the effects of hypothermia and drugs. Arch Int Pharmacodyn Ther 286:282–298

    Google Scholar 

  75. King GA (1987b) Protective effects of vinpocetine and structurally related drugs on the lethal consequences of hypoxia in mice. Arch Int Pharmacodyn Ther 286:299–307

    Google Scholar 

  76. Kiss B, Lapis E, Palosi E, Groo D, Szporny L (1982) Biochemical and pharmacological observations with vinpocetine, a cerebral oxygenator. In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia vol 7: International Symposium on protection of tissues against hypoxia. Elsevier, Amsterdam, pp 305–309

    Google Scholar 

  77. Kopelman MD, Lishman WA (1986) Pharmacological treatments of dementia (non-cholinergic). Br Med Bull 42:101–105

    Google Scholar 

  78. Lacroix P, Quiniou MJ, Linee P, Le Polles JB (1979) Cerebral metabolic and haemodynamic activities ofl-eburnamonine in the anesthetized dog. Arzneimittelforschung 29:94–101

    Google Scholar 

  79. Lamar J-C, Beaughard M, Bromont C, Poignet H (1986) Effects of vinpocetine in four pharmacological models of cerebral ischaemia. In: Krieglstein J (ed) Pharmacology of cerebral ischaemia. Elsevier, Amsterdam, pp 334–339

    Google Scholar 

  80. Lapis E, Balazs ZM, Rosdy B (1979) Biochemical effects of semisynthetic vinca alkaloids on the cyclic AMP system. Third Congress Hungarian Pharmacol Soc, pp 429–433

  81. Lemmer B, Ohm T, Bohl J (1989) Reduced basal and stimulated adenylate cyclase activity in post-mortem hippocampus of Alzheimer patients. Naunyn-Schmiedeberg's Arch Pharmacol 339:R108

  82. MacKenzie ET, Gotti B, Nowicki JP, Young AR (1984) Adrenergic blockers as cerebral antiischaemic agents. In: MacKenzie ET (ed) LERS, vol 2. Raven Press, New York, pp 219–243

    Google Scholar 

  83. McDonald RJ (1979) Hydergine: a review of 26 clinical studies. Pharmakopsychiatr Neuropsychopharmakol 12:407–422

    Google Scholar 

  84. Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–638

    Google Scholar 

  85. Markstein R (1983) Dopamine receptor profile of co-dergocrine (hydergine) and its components. Eur J Pharmacol 86:145–155

    Google Scholar 

  86. Markstein R, Wagner H (1978) Effect of dihydroergotoxine on cyclic AMP-generating systems in rat cerebral cortex slices. Gerontology [Suppl 1] 24:94–105

    Google Scholar 

  87. Maragos WF, Greenamyre T, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimer's disease: an hypothesis. Trends Neurosci 10:65–68

    Google Scholar 

  88. Marriott JG, Poschel BPH, Voigtman RE, Abelson JS, Butler DE (1984) Cognition actuating properties of dihydro-pyrrolizine 3,5 (2H, 6H)-dione (Cl-911) in animal models. Soc Neurosci Abstr 10:252

    Google Scholar 

  89. Matejeck M, Devos JE (1976) Selected methods of quantitative EEG analysis and their applications in psychotropic drug research. In: Kellaway P, Peterson I (eds) Quantitative analytic studies in epilepsy. Raven Press, New York, pp 183–205

    Google Scholar 

  90. Mathew RJ, Wilson WH (1985) Caffeine induced changes in cerebral circulation. Stroke 16:814–817

    Google Scholar 

  91. Meier-Ruge W, Enz A, Gygax P, Iwangoff P, Wiensperger N (1978) Pharmacological aspects of dihydrogenated ergot alkaloids in experimental brain research. Pharmacology [Suppl 1] 16:45–62

    Google Scholar 

  92. Meldrum BS (1983) Metabolic effects of prolonged epileptic seizures and causation of epileptic seizures and causation of epileptic brain damage. In: Rose FC (ed) Metabolic disorders of the nervous system. Pitman, London, pp 175–187

    Google Scholar 

  93. Milanova D, Nikolov R, Nikolova M (1983) Study on the antihypoxic effect of some drugs used in the pharmacotherapy of cerebrovascular disease. Methods Find Exp Clin Pharmacol 5:407–422

    Google Scholar 

  94. Mohs RC, Davis KL (1987) The experimental pharmacology of Alzheimer's and related dementias. In: Meltzer H (ed) Psychopharmacology, the third generation of progress. Raven Press, New York, pp 921–928

    Google Scholar 

  95. Moos WH, Davis RE, Schwarz RD, Gamzu ER (1988) Cognition activators. In: Medical research reviews, vol 8. Wiley, New York, pp 353–391

    Google Scholar 

  96. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long term potentiation by an N-methyl-d-aspartate receptor antagonist, APS. Nature 319:774–776

    Google Scholar 

  97. Moyersoons F, Giurgea CE (1974) Protective effect of piracetam in experimental barbiturate intoxication: EEG and behavioural studies. Arch Int Pharmacodyn Ther 210:38–48

    Google Scholar 

  98. Mrsulja BB, Micic DV, Djuricic BM (1983) Gerbil stroke model: an approach to the study of therapeutic aspects of post-ischemic brain odema. In: Stefanovich V (ed) “Stroke” animal models. Oxford, Pergamon Press, pp 45–60

    Google Scholar 

  99. Muller R (1981) Hemorheology and peripheral vascular disease a new therapeutic approach. J Med 12:209–236

    Google Scholar 

  100. Muller R, Lehrach F (1981) Haemorheology and cerebrovascular disease: multifunctional approach with pentoxifylline. Curr Med Res Opin 7:253–263

    Google Scholar 

  101. Murray CL, Fibiger HC (1986) The effect of pramiracetam (CI-879) on the acquisition of a radial arm maze task. Psychopharmacology 89:378–381

    Google Scholar 

  102. Nagata K, Ogawa T, Osmosu M, Fujimoto K, Hayashi S (1985) In vitro and in vivo inhibitory effects of propentofylline on cyclic AMP phosphodiesterase activity. Arzneimittelforschung 30:1034–1037

    Google Scholar 

  103. Nehlig A, Lucignani G, Kadekaro M, Porrino LJ, Sokoloff L (1984) Effects of acute administration of caffeine on local cerebral glucose utilization in the rat. Eur J Pharmacol 101:91–100

    Google Scholar 

  104. Nicholson CD, Angersbach D (1986) Denbufylline (BRL 30892) — a novel drug to alleviate the consequences of cerebral ischaemia. In: Krieglstein (ed) Pharmacology of cerebral ischaemia. Elsevier, Amsterdam, pp 371–396

    Google Scholar 

  105. Nicholson CD, Jackman SA, Wilke R (1989) The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site. Br J Pharmacol 97:889–897

    Google Scholar 

  106. Nicholson CD, Jukna JJ, Wilke R, Angersbach D (1989) Effect of denbufylline in passive avoidance trials in gerbils, following transient forebrain ischaemia, and in mice. Drug Dev Res 14:349–352

    Google Scholar 

  107. Nickolson VJ, Wolthuis OL (1976) Effect of the acquisition-enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine. Biochem Pharmacol 25:2241–2244

    Google Scholar 

  108. O'Connolly MO, Mayer M-ER, Wolf D, Brett M, Greb WH (1986) Efficacy and tolerance of denbufylline (BRL 30892) in patients with cerebrovascular disease — an investigational study with a new agent. In: Krieglstein J (ed) Pharmacology of cerebral ischaemia. Elsevier, Amsterdam, pp 440–444

    Google Scholar 

  109. Okuyama S, Aihara H (1988) Action of nootropic drugs on transcallosal responses in rats. Neuropharmacology 27:67–72

    Google Scholar 

  110. Pearson RC, Esiri MM, Hiorns RW, Wilcock GH, Powell TP (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 82:4531–4534

    Google Scholar 

  111. Perry E (1986) The cholinergic hypothesis — ten years on. Br Med Bull 42:63–69

    Google Scholar 

  112. Popendiker R, Bohsay I, Bollmann V (1971) Zur Pharmakologie des neuen peripheren Gefässdilatators 3,7-Dimethyl-1-(5-oxohexyl)-xanthin. Arzneimittelforschung 21:1160–1171

    Google Scholar 

  113. Pugliese AM, Corradetti R, Pepeu G (1989) Effect of the cognition enhancing agent oxiracetam on electrical activity of hippocampal slices. Br J Pharmacol 96:80P

    Google Scholar 

  114. Rogers RL, Meyer JS, Mortel KF, Mahurin RK, Judd BW (1986) Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type. Neurology 36:1–6

    Google Scholar 

  115. Rosdy B, Balazs M, Szporny L (1976) Biochemical effects of ethyl apovincaminate. Arzneimittelforschung 26:1973–1976

    Google Scholar 

  116. Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. Trends Neurosci 10:299–302

    Google Scholar 

  117. Rubieck J, Geiger C, Abt K (1972) An ergot alkaloid preparation (Hydergine) in geriatric therapy. J Am Geriat Soc 20:222–229

    Google Scholar 

  118. Rudolphi KA, Keil M, Hinze HJ (1987) Effect of theophylline on ischemically induced hippocampal damage in mongolian gerbils: a behavioural and histopathological study. J Cereb Blood Flow Metabol 7:74–81

    Google Scholar 

  119. Sansone M, Castellano C, Ammassari-Teule M (1985) Improvement of avoidance acquisition by the nootropic drug oxiracetam in mice. Arch Int Pharmacodyn Ther 275:86–92

    Google Scholar 

  120. Sara SJ (1980) Memory retrieval deficits: alleviation by etiracetam, a nootropic drug. Psychopharmacology 68:235–241

    Google Scholar 

  121. Sara SJ, David-Remacle M, Weyers M, Giurgea CE (1979) Piracetam facilitates retrieval but does not impair extinction of barpressing in rats. Psychopharmacology 61:71–75

    Google Scholar 

  122. Sarter M, Schneider HH, Stephens DN (1988) Treatment strategies for senile dementia: antagonistβ-carbolines. Trends Neurosci 11:13–17

    Google Scholar 

  123. Satoh M, Ishihara K, Iwana T, Takagy H (1986) Aniracetam augments, and midazolam inhibits, the long-term potentiation in guinea-pig hippocampal slices. Neurosci Lett 68:216–220

    Google Scholar 

  124. Sauer D, Rischke R, Beck T, Rossberg C, Mennel H-D, Bielenberg CW, Krieglstein J (1988) Vinpocetine prevents ischemic cell damage in rat hippocampus. Life Sci 43:1733–1739

    Google Scholar 

  125. Schindler U, Rush D, Fielding S (1984) Nootropic drugs: animal modes for studying effect on cognition. Drug Dev Res 4:567–576

    Google Scholar 

  126. Schmid-Schonbein H (1976) Microrheology of erythrocytes blood viscosity and the distribution of blood flow in the microcirculation. In: Guyten AC, Cowley AW (eds) Rev Physiol 9, University Park Press, Baltimore, pp 1–61

    Google Scholar 

  127. Schmid-Schonbein H (1989) Influence of vinpocetine on microsieve filterability and membrane curvature of red cells after exposure to hypersomalality and lactacidosis. Drug Dev Res (in press)

  128. Schoffelmeer ANM, Wardeh G, Mulder AH (1985) Cyclic AMP facilitates the electrically evoked release of radiolabelled noradrenaline, dopamine and 5-hydroxytryptamine from rat brain slices. Naunyn-Schmiedeberg's Arch Pharmacol 330:74–76

    Google Scholar 

  129. Schubert P, Kreutzberg GW (1987) Pre- versus postsynaptic effects of adenosine on neuronal calcium fluxes. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg New York, pp 521–532

    Google Scholar 

  130. Shibota M, Kakihana M, Nagaoka A (1982) The effect of vinpocetine on brain glucose uptake in mice. Folia Pharmacol Japan 80:221–224

    Google Scholar 

  131. Silver PJ, Hamel LT, Perrone MH, Bentley RG, Bushover CR, Evans DB (1988) Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isoenzymes isolated from cardiac muscle arterial and airways smooth muscle. Eur J Pharmacol 150:85–94

    Google Scholar 

  132. Simon RP, Griffiths T, Evans MC, Swan JH, Meldrum BS (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metabol 4:350–361

    Google Scholar 

  133. Smellie FW, Davis CW, Daly JW, Wells JN (1979) Alkylxanthines: inhibition of adenosine elicited accumulation of cyclic AMP in brain slices and brain phosphodiesterase activity. Life Sci 24:2474–2482

    Google Scholar 

  134. Sonders MS, Keana JFW, Weber E (1988) Phencyclidine and psychotomimetic sigma opiates insights into their biochemical and physiological sites of action. Trends Neurosci 11:37–40

    Google Scholar 

  135. Spignoli G, Pepeu G (1987) Interactions between oxiracetam, aniracetam and scopolamine on behavior and brain acetylcholine. Pharmacol Biochem Behav 27:491–495

    Google Scholar 

  136. Stefanovich V (1973) Concerning specificity of the influence of pentoxifylline on various cyclic AMP phosphodiesterases. Res Commun Chem Pathol Pharmacol 5:655

    Google Scholar 

  137. Stefanovich V (1983) Uptake of adenosine by isolated bovine cortex microvessels. Neurochem Res 11:1459–1469

    Google Scholar 

  138. Stegink AJ (1972) The clinical use of piracetam, a new nootropic drug. Arzneimittelforschung 22:975–979

    Google Scholar 

  139. Strada SJ, Martin MW, Thompson WJ (1984) General properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv Cyclic Nucleotide Res 16:13–29

    Google Scholar 

  140. Subhan Z, Hindmarch I (1985) Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol 28:567–571

    Google Scholar 

  141. Sutherland EW, Rall TW (1958) Fractionation and characterisation of a cyclic adenosine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    Google Scholar 

  142. Tank AW, Weiner N (1981) Effect of carbachol and 56 mM-potassium chloride on the cyclic AMP-mediated induction of tyrosine hydroxylase in neuroblastoma cells in culture. J Neurochem 36:518–531

    Google Scholar 

  143. Tomlinson BE, Blessed G, Roth M (1970) Observations of the brains of demented old people. J Neurol Sci 11:205–242

    Google Scholar 

  144. Venutti P, Ferretti C, Portaleone P (1982) Ergot alkaloids and phosphodiesterase: ‘in vitro’ activities in several rat brain areas. Experientia 38:601–603

    Google Scholar 

  145. Vereczkey L, Szporny L (1976) Metabolism of ethyl apovincaminate in the rat. Arzneimittelforschung 26:1933–1938

    Google Scholar 

  146. Vereczkey L, Czira J, Tamas J, Szentirmay ZS, Botar Z, Szporny L (1979) Pharmacokinetics of vinpocetine in humans. Arzneimittelforschung 29:957–960

    Google Scholar 

  147. Wauquier A (1984) Effect of calcium entry blockers in models of brain hypoxia. Dev Cardiovasc Med 40:241–254

    Google Scholar 

  148. Weishaar RE, Cain MH, Bristol JA (1985) A new generation of phosphodiesterase inhibitors: multiple forms of phosphodiesterase and its potential for drug selectivity. J Med Chem 246:3145–3150

    Google Scholar 

  149. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan MR (1987) Sublcasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 61:539–547

    Google Scholar 

  150. Wieloch T, Koide T, Westerberg E (1986) Inhibitory neurotransmitters and neuromodulators as protective agents against ischemic brain damage. In: Krieglstein J (ed) Pharmacology of cerebral ischaemia. Elsevier, Amsterdam, pp 191–197

    Google Scholar 

  151. Wilke R, Arch JRS, Nicholson CD (1989) Tissue selective inhibition of cyclic nucleotide phosphodiesterase by denbufylline. Arzneimittelforschung 39:665–667

    Google Scholar 

  152. Wolthuis OL (1971) Experiments with UCB 6215, a drug which enhances acquisition in rats: its effects compared with those of metamphetamine. Eur J Pharmacol 16:283–297

    Google Scholar 

  153. Wolthuis OL (1981) Behavioural effects of etiracetam in rats. Pharmacol Biochem Behav 15:247–255

    Google Scholar 

  154. Wu PH, Phillis JW, Nye MJ (1982) Alkylxanthines as adenosine receptor antagonists and membrane phosphodiesterase inhibitors in central nervous tissue: evaluation of structure-activity relationships. Life Sci 31:2857–2862

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nicholson, C.D. Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia. Psychopharmacology 101, 147–159 (1990). https://doi.org/10.1007/BF02244119

Download citation

Key words

  • Dementia
  • Nootropics
  • Vinca alkaloids
  • Ergot alkaloids
  • Alkylxanthines