Skip to main content
Log in

Redundancy techniques and fast algorithms for a special large linear system

Redundanztechniken und schnelle Algorithmen für ein spezielles großes lineares System

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In a recently developed approach to the optical inverse scattering problem, the need arose to solve very large systems of linear equations with a nonsparse matrix. The entries in the matrix are determined by the specifications for the data collection pattern. The matrix is not a Discrete Fourier Transform matrix, and it not anenable to FFT methods. In this paper we show how a combination of the techniques of “redundancies” and “Kronecker decompositions” may be used with a specification for the data collection to produce a fast, accurate algorithm which solves the linear system. This algorithm has been implemented on a sequential computer, but parallel computation is clearly feasible.

Zusammenfassung

In einer neueren Darstellung des optischen inversen Streuungsproblems tauchte das Problem auf, große lineare Gleichungssysteme mit vollbesetzten Matrizen zu lösen. Die Matriexelemente sind durch die Beschreibungen der Muster für die Datenerfassung festgelegt. Die Matrix beschreibt keine diskrete Fourier-Transformation und ist nicht auf FFT-Methoden anwendbar. In diesem Artikel zeigen wir, wie man eine Kombination der “redundancies”-Techniken und der Kronecker-Zerlegungen dazu benutzen kann, mit einer Beschreibung der Datenerfassung einen schnellen und genauen Algorithmus zur Lösung linearer Gleichungssysteme zu gewinnen. Dieser Algorithmus wurde auf einem sequentiellen Computer implementiert; parallele Berechnung ist natürlich auch durchführbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Good, I. J.: The Interactive Algorithm and Practical Fourier Analysis. J. Roy. Stat. Soc.B 20, 361–372 (1958).

    Google Scholar 

  2. Cooley, J. W., Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comp.19, 297–301 (1965).

    Google Scholar 

  3. Andrews, H. C.: Computer Techniques in Image Processing, pp. 73–90. New York: Academic Press 1970.

    Google Scholar 

  4. Lam, D. K. K.: Fast Matrix Inversion and Application in Optics. Technical Report TR 75-14, Department of Computing Science, University of Alberta, Canada, 1975.

    Google Scholar 

  5. Traub, J. F.: Associated Polynomials and Uniform Methods for the Solution of Linear Problems. SIAM Review8, 287–301 (1966).

    Google Scholar 

  6. Pereyra, V., Ballester, C.: On the Construction of Discrete Approximations to Linear Differential Expressions. Math. Comp.21, 297–302 (1967).

    Google Scholar 

  7. Westlake, J. R.: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, pp. 89–116. New York: J. Wiley 1968.

    Google Scholar 

  8. Ekstrom, M. P.: A Numerical Algorithm for Identifing Spread functions of Shift-Invariant Imaging Systems. IEEE Trans. on Computers22, 322–327 (1973).

    Google Scholar 

  9. Lancaster, P.: Theory of Matrices. New York: Academic Press 1969.

    Google Scholar 

  10. Lam, D. K., Schmid-Weinmar, H. G., Wouk, A.: The 3-D Distribution of Sources of Optical Scattering Computed from Complex-Amplitive Far-Field Data. Canadian Journal of Physics54, 1925–1936 (1976).

    Google Scholar 

  11. Isaacson, A., Keller, H. B.: Analysis of Numerical Methods, p. 37. New York: J. Wiley 1966.

    Google Scholar 

  12. Gentherman, W. M.: Matrix Multiplication and Fast Fourier Transforms. Bell System Technical Journal47, 1099–1103 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, D.K., Wouk, A. Redundancy techniques and fast algorithms for a special large linear system. Computing 18, 317–327 (1977). https://doi.org/10.1007/BF02244018

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02244018

Keywords

Navigation