, Volume 51, Issue 1, pp 45–60 | Cite as

The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems

  • O. Scherzer


In this paper we investigate Morozov's Discrepancy Principle for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems. Convergence rates and a saturation property of the regularized solutions, where the regularization parameter is chosen by the discrepancy principle, are investigated. Numerical results are presented to verify the theoretical results.

AMS (MOS) Subject Classification

65M30 65J20 35R30 

Key words

Tikhonov regularization inverse problems ill-posed problems parameter identification 

Über die Verwendung des Morozovschen Diskrepanz Prinzips bei Tikhonov Regularisierung zur Lösung nichtlinearer inkorrekt gestellter Probleme


In dieser Arbeit wird das Morozovsche Diskrepanz Prinzip betrachtet, welches bei der Tikhonov Regularisierung zur Lösung eines inkorrekt gestellten Problems zur Wahl des Regularisierungsparameters herangezogen wird. Untersucht werden Konvergenz, Konvergenzraten der regularisierten Lösungen, wenn der Regularisierungsparameter nach dem Morozovschen Diskrepanz Prinzip gewählt wird, und die Saturationseigenschaft dieses Diskrepanz Prinzips. Es werden einige numerische Beispiele zur Untermauerung der theoretischen Resultate präsentiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Binder A., Engl H. W., Groetsch C. W., Neubauer A., Scherzer O.: Weakly closed nonlinear operators and parameter identification in parabolic equations by Tikhonov regularization. (Submitted).Google Scholar
  2. [2]
    Colonius F., Kunisch K.: Stability for parameter estimation in two point boundary value problems. J. Reine Angewandte Math.370, 1–29 (1986).Google Scholar
  3. [3]
    Engl H. W., Gfrerer H.: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems. Appl. Numer. Math.4, 395–417 (1988).CrossRefGoogle Scholar
  4. [4]
    Engl H. W., Kunisch K., Neubauer A.: Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems5, 523–540 (1989).CrossRefGoogle Scholar
  5. [5]
    Groetsch C. W.: Comments on Morozov's Discrepancy Principle. In: Hämmerlin G., Hoffmann K. H. (eds.), Improperly posed problems and their numerical treatment, pp. 97–104. Basel: Birkhäuser 1983.Google Scholar
  6. [6]
    Groetsch C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind. Boston: Pitman 1984.Google Scholar
  7. [7]
    Kravaris C., Seinfeld J. H.: Identification of parameters in distributed parameter systems by regularization. SIAM J. Contr. Opt.23, 217–241 (1985).CrossRefGoogle Scholar
  8. [8]
    Morozov V. A.: Methods for solving incorrectly posed problems (translation ed.: Nashed M. Z.). Wien, New York: Springer 1984.Google Scholar
  9. [9]
    Neubauer A.: Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems5, 541–557 (1989).CrossRefGoogle Scholar
  10. [10]
    Scherzer O., Engl H. W., Kunisch K.: Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal. (to appear).Google Scholar
  11. [11]
    Scherzer O.: Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems. Numer. Math. (to appear).Google Scholar
  12. [12]
    Seidman T. I., Vogel C. R.: Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems. Inverse Problems5, 227–238 (1989).CrossRefGoogle Scholar
  13. [13]
    Tikhonov A. N., Arsenin V. Ya.: Solutions of ill-posed problems. New York, Winston-Wiley: 1977.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • O. Scherzer
    • 1
  1. 1.Institut für MathematikJohannes-Kepler-UniversitätLinz AuhofAustria

Personalised recommendations