, Volume 43, Issue 1, pp 59–72 | Cite as

A self-validating numerical method for the matrix exponential

  • Pavel Bochev
  • Svetoslav Markov


An algorithm is presented, which produces highly accurate and automatically verified bounds for the matrix exponential function. Our computational approach involves iterative defect correction, interval analysis and advanced computer arithmetic. The algorithm presented is based on the “scaling and squaring” scheme, utilizing Padé approximations and safe error monitoring. A PASCAL-SC program is reported and numerical results are discussed.

AMS Subject Classification

65G10 65L05 65F30 41A21 

Key words

matrix exponential Padé approximations iterative defect correction 

Eine selbstverifizierende numerische Methode fuer die Exponentialfunktion einer Matrix


Es wird ein Algorithmus vorgestellt, der hochgenaue und automatisch verifizierte Grenzen fuer die Exponentialfunktion einer Matrix liefert. Unser Verfahren benuetzt iterative Defektkorrektur, Intervall-Analysis und eine erweiterte Rechnerarithmetik. Der dargestellte Algorithmus basiert auf dem “scaling and squaring” Schema und benutzt Padé-Approximationen und safe-error-monitoring. Es werden ein PASCAL-SC Programm vorgestellt und numerische Resultate diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ACRITH General Information Manual IBM Publication No. GC33-6163-01 (Version 1, Release 2), 1984.Google Scholar
  2. [2]
    Auzinger, W., Stetter, H. J.: Accurate arithmetic results for decimal data on non-decimal computers. Computing 35, 141–151, 1985.Google Scholar
  3. [3]
    Boehmer, K., Hemker, P., Stetter, H.: The Defect Correction Approach. Computing Suppl. 5, 1984, p. 1–32.Google Scholar
  4. [4]
    HIFICOMP Subroutine library for highly efficient numerical computations. Methodological Guide, ed. S. Markov. Bulgarian Academy of Sciences, Sofia 1987.Google Scholar
  5. [5]
    Kulisch, U., Miranker, W.: Computer Arithmetic in Theory and Practice. Academic Press, 1981.Google Scholar
  6. [6]
    Markov, S.: Mathematical fundamentals of numerical computation. Proc. 17th spring conference of UMB “Mathematics and education in mathematics”, Publ. house of the Bulg. Acad. of Sci., Sofia 1988.Google Scholar
  7. [7]
    Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute The Exponential of a Matrix. SIAM Review,20, 4, 1978, p. 801–836.CrossRefGoogle Scholar
  8. [8]
    Moore, R., E.: Methods and Applications of the Interval Analysis. SIAM, Phyladelfia, 1979.Google Scholar
  9. [9]
    PASCAL-SC Information Manual and Floppy Disks U. Kulisch—editor, John Willey & Sons, 1987.Google Scholar
  10. [10]
    Rump, S., Boehm, H.: Least significant Bit Evaluation of Arithmetic Expressions in Single Precision. Computing30, 1983, p. 189–199.Google Scholar
  11. [11]
    Stetter, H.: Sequential Defect Correction for High-accuracy Floating-point Algorithms. Lecture Notes in Mathematics1006, 1984, p. 186–202.Google Scholar
  12. [12]
    Ward, R.: Numerical Computation of the Matrix Exponential With Accuracy Estimate. SIAM J. Num. Anal.14, 4, 1977, p. 600–610.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Pavel Bochev
    • 1
  • Svetoslav Markov
    • 2
  1. 1.Centre for informatics and computer technologyBulgarian Academy of Sciences, “Acad. G. Bonchev”SofiaBulgaria
  2. 2.Institute of Mathematics with Computing CenterBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations