Advertisement

On the use of equations to estimate atmospheric thermal radiation

  • Sherwood B. Idso
Article

Summary

Four of the most commonly used empirical equations relating atmospheric thermal radiation to screen-level vapor pressure and/or air temperature are contrasted. The successes and failures of those equations that are based only on air temperature are shown to be dependent upon the degree of correlation between surface vapor pressure and air temperaturevia a modified “opacity effect”. Several considerations are listed for determining whether to use an equation based only on air temperature or one based on both air temperature and vapor pressure. The equations are then evaluated relative to each other in each of these two groups. Finally, some new ideas are presented relative to the problems encountered with estimating atmospheric thermal radiation when clouds are present.

Keywords

Radiation Climate Change Waste Water Water Management Water Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Über die Anwendung von Gleichungen zur Schätzung der atmosphärischen Wärmestrahlung

Zusammenfassung

Es werden vier der meist verwendeten empirischen Gleichungen für die Berechnung der atmosphärischen Wärmestrahlung aus Stationsbeobachtung des Dampfdruckes und/oder der Lufttemperatur einander gegenübergestellt. Es wird gezeigt, daß die Erfolge und die Versager der Gleichungen, die nur auf der Lufttemperatur basieren, vom Grad der Korrelation zwischen Wasserdampf und Lufttemperatur über einem modifizierten „Undurchlässigkeitseffekt” abhängen. Ferner werden einige Beobachtungen über die Anwendung einer Gleichung, die nur die Lufttemperatur, oder einer Gleichung, die die Lufttemperatur und den Wasserdampfdruck einbezieht, angestellt. Für diese zwei Gruppen werden die Auswertungen der Gleichungen miteinander verglichen. Schließlich werden neue Ideen zum Problem der Berechnung der atmosphärischen Wärmestrahlung bei Bewölkung dargelegt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ångström, A.: A Study of the Radiation of the Atmosphere. Smithsonian Misc. Coll.65 (3), 159 pp. (1915).Google Scholar
  2. 2.
    Ångström, A.: Effective Radiation During the Second International Polar Year. Medd. Statens. Meteorol. Hydrogr. Anst., Stockholm,6 (8), 1936.Google Scholar
  3. 3.
    Brunt, D.: Notes on Radiation in the Atmosphere. Quart. J. Roy. Meteorol. Soc.58, 389–418 (1932).Google Scholar
  4. 4.
    Deacon, E. L.: Water Vapor Over the Sahara and TIROS III Observations. J. Atmos. Sci.20, 614–615 (1963).Google Scholar
  5. 5.
    Deacon, E. L.: The Derivation of Swinbank's Long-Wave Radiation Formula. Quart. J. Roy. Meteorol. Soc.96, 313–319 (1970).Google Scholar
  6. 6.
    Fritschen, L. J.: Construction and Evaluation of a Miniature Net Radiometer. J. Appl. Meteorol.2, 165–172 (1963).Google Scholar
  7. 7.
    Fritschen, L. J.: Miniature Net Radiometer Improvements. J. Appl. Meteorol.4, 528–532 (1965).Google Scholar
  8. 8.
    Funk, J. P.: Improved Polythene-Shielded Net Radiometer. J. Sci. Instr.36, 267–270 (1959).Google Scholar
  9. 9.
    Funk, J. P.: A Net Radiometer Designed for Optimum Sensitivity and a Ribbon Thermopile Used in a Miniature Version. J. Geophys. Res.67, 2753–2760 (1962).Google Scholar
  10. 10.
    Geiger, R.: The Climate Near the Ground. Cambridge: Harvard Univ. Press, 1959.Google Scholar
  11. 11.
    Idso, S. B.: Transformation of a Net Radiometer into a Hemispherical Radiometer. Agric. Meteorol.9, 109–121 (1971).Google Scholar
  12. 12.
    Idso, S. B.: Simplifications in the Transformation of Net Radiometers into Hemispherical Radiometers. Agric. Meteorol.10, 473–476 (1972).Google Scholar
  13. 13.
    Idso, S. B.: A Comparison of the Funk and Idso Techniques for Measuring Hemispherical All-Wave Radiation. Rev. Sci. Instr.43, 506–508 (1972).Google Scholar
  14. 14.
    Idso, S. B.: Systematic Deviations of Clear Sky Atmospheric Thermal Radiation from Predictions of Empirical Formulae. Quart. J. Roy. Meteorol. Soc.98, 399–401 (1972).Google Scholar
  15. 15.
    Idso, S. B., and B. L. Blad: The Effect of Air Temperature upon Net and Solar Radiation Relations. J. Appl. Meteorol.10, 604–605 (1971).Google Scholar
  16. 16.
    Idso, S. B., and R. D. Jackson: Thermal Radiation from the Atmosphere. J. Geophys. Res.74, 5397–5403 (1969).Google Scholar
  17. 17.
    Idso, S. B., and P. C. Kangieser: Seasonal Changes in the Vertical Distribution of Dust in the Lower Troposphere. J. Geophys. Res.75, 2179–2184 (1970).Google Scholar
  18. 18.
    Kalma, J. D.: The Radiation Balance of a Tropical Pasture. II. Net All-Wave Radiation. Agric. Meteorol.10, 261–275 (1972).Google Scholar
  19. 19.
    Kondrat'yev, K. Ya.: Radiative Heat Exchange in the Atmosphere. New York: Pergamon Press, 1965.Google Scholar
  20. 20.
    Lonnquist, O.: Synthetic Formulae for Estimating Effective Radiation to a Cloudless Sky and Their Usefulness in Comparing Various Estimation Procedures. Archiv. Geophys.2, 245–294 (1954).Google Scholar
  21. 21.
    Monteith, J. L.: Long-Wave Radiation from Clear Skies. Discussion. Quart. J. Roy. Meteorol. Soc.90, 488–493 (1964).Google Scholar
  22. 22.
    Paltridge, G. W.: Daytime Long-Wave Radiation from the Sky. Quart. J. Roy. Meteorol. Soc.96, 645–653 (1970).Google Scholar
  23. 23.
    Sellers, W. D.: Physical Climatology. Chicago: Univ. of Chicago Press, 1965.Google Scholar
  24. 24.
    Swinbank, W. C.: Long-Wave Radiation from Clear Skies. Quart. J. Roy. Meteorol. Soc.89, 339–348 (1963).Google Scholar
  25. 25.
    Swinbank, W. C.: Long-Wave Radiation from Clear Skies. Discussion. Quart. J. Roy. Meteorol. Soc.90, 488–493 (1964).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Sherwood B. Idso
    • 1
  1. 1.U.S. Water Conservation LaboratoryPhoenixU.S.A.

Personalised recommendations