Skip to main content
Log in

The turbidity parameters in Athens

Die Trübungsparameter in Athen

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B Aims and scope Submit manuscript

Summary

In this paper Ångström's turbidity coefficient β0, wave-length exponent α0 and the decadic turbidity coefficientB after Schüepp have been computed in Athens from pyrheliometric measurements of direct solar radiation for the whole spectrum and of specified spectral regions using Schott filters for the period 1963–1972. Turbidity coefficient β0 shows an annual variation with low values in winter and high values in spring. The wavelength exponent α0 shows a similar but opposite in sense variation. The decadic trubidity coefficientB is low in winter and attains the highest values in late spring and summer. In order to show the diurnal variation of the turbidity parameters this are given for each of the observation hours 0820, 1120, 1420 and 1720. The annual and diurnal variations of the turbidity parameters are discussed in reference to their relation with seasonal changes of synoptic weather situations, to the prevailing winds and the different air masses.

Zusammenfassung

Aus den in Athen von 1963 bis 1972 durchgeführten Pyrheliometermessungen der direkten Sonnenstrahlung im Gesamtspektrum und in speziellen Spektralbereichen werden der Wellenlängenexponent α0 und der Trübungskoeffizient β0 nach Ångström sowie der dekadische TrübungskoeffizientB nach Schüepp berechnet. Im Jahresgang weist25-7 niedrige Werte im Winter und hohe Werte im Frühling auf, α0 zeigt einen dazu inversen Jahresgang undB ist im Winter niedriger und am höchsten im Spätfrühling und im Sommer. Zur Beurteilung des Tagesganges der Trübungsparameter werden diese auch für die Beobachtungstermine 8h20, 11h20, 14h20 und 17h20 gesondert angegeben. Jahres-und Tagesgang der Trübungsparameter werden in ihrem Zusammenhang mit den jahreszeitlichen Änderungen der synoptischen Wetterlagen, der vorherrschenden Winde und der verschiedenen Luftmassen diskutiert und zu erklären versucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, C. W.: Astrophysical Quantities. London: Athlone Press. 291 (1964).

    Google Scholar 

  2. Ångström, A.: Techniques of Determining the Turbidity of the Atmosphere. Tellus,13, 214–223 (1961).

    Google Scholar 

  3. Ångström, A.: The Parameters of Atmospheric Turbidity. Tellus16, 64–75 (1964).

    Google Scholar 

  4. Budyko, M. I.: The Effect of Solar Radiation Variations on the Climate of the Earth. Tellus,21, 611–619 (1969).

    Google Scholar 

  5. Byers, H. R.: General Meteorology. New York: McGraw-Hill Book Co., 2nd ed. 540 (1944).

    Google Scholar 

  6. Carapiperis, L. N.: The Etesian Winds. II. On the Frequency of the Etesian Winds. Memoirs Nat. Observatory of Athens, Meteorology,10, 16 (1962).

    Google Scholar 

  7. Carapiperis, L. N.: The Etesian Winds. VI. On the Daily Variation of the Velocity of the Etesian Winds in Athens. Memoirs Nat. Observatory of Athens, Meteorology,17, 19 (1968).

    Google Scholar 

  8. Cobb, E. W., and J. H. Wells: The Electrical Conductivity of Oceanic Air and Its Correlation to Global Atmospheric Pollution. J. Atmos. Sci.,27, 814–819 (1970).

    Google Scholar 

  9. CSAGI: IGY Instruction Manual, Part VI: Radiation Instruments and Measurements. Annals of IGY. London: Pergamon Press, 362–466 (1957).

    Google Scholar 

  10. Drummond, A. J., J. R. Hickey, W. J. Scholes and E. G. Laue: New Value for the Solar Constant of Radiation. Nature,218, 259–261 (1968).

    Google Scholar 

  11. Herovanu, M.: Détermination des paramètres d'Ångström par des observations actinométriques courantes. Geof. Pura Appl.,44, 315–321 (1959).

    Google Scholar 

  12. Johnson, F. S.: The Solar Constant. J. Meteor.,11, 431–439 (1954).

    Google Scholar 

  13. Joseph, J. H., and A. Manes: Secular and Seasonal Variations of Atmospheric Turbidity at Jerusalem. J. Appl. Met.,10, 453–462 (1971).

    Google Scholar 

  14. Junge, C.: The Size Distribution and Aging of Natural Aerosols as Determined from Electrical and Optical Data of the Atmosphere. J. Meteor.,12, 13–25 (1955).

    Google Scholar 

  15. Junge, C. E.: Air Chemistry and Radioactivity. pp. 111–208. New York: Academic Press (1963).

    Google Scholar 

  16. Karapiperis, L. N.: Über eine Klassifizierung der Etesien auf Grund der herrschenden isobarischen Zustände. Meteor. Runds.,7, No. 1/2, 6–9 (1954).

    Google Scholar 

  17. Karapiperis, P. Ph.: Characteristics of Local Winds at Athens, Greece. Geof. Pura Appl.25, 203–208 (1953).

    Google Scholar 

  18. Kraus, H.: The Radiation Sub-Programme for the GARP Atlantic Tropical Experiment. GATE Report No.4. Geneva: WMO, 110 (1973).

    Google Scholar 

  19. Kuhn, M.: Die spektrale Transparenz der antarktischen Atmosphäre. Teil I: Meßinstrumente und Rechenmethoden. Arch. Met. Geoph. Biokl., Ser. B,20, 207–248 (1972).

    Google Scholar 

  20. Lal, M., and H. S. Rathor: Determination of Atmospheric Turbidity Parameters over the North and Central India. Arch. Met. Geoph. Biokl., Ser. B,19, 297–306 (1971).

    Google Scholar 

  21. London Meteorological Office: Weather in the Mediterranean. Vol. 1, 2nd ed. London. 362 (1962).

  22. Mani, A., O. Chacko and S. Sariharan: A Study of Ångström's Turbidity Parameters from Solar Radiation Measurements in India. Tellus,21, 829–843 (1969).

    Google Scholar 

  23. Mani, A., O. Chacko and N. V. Iyer: Atmospheric Turbidity over India from Solar Radiation Measurements. Solar Energy,14, 185–195 (1973).

    Google Scholar 

  24. Mariolopoulos, E.: An Outline of the Climate of Greece. Publ. Meteor. Inst., University of Athens, No.6, 51 (1961).

    Google Scholar 

  25. Nicolet, M.: Sur la détermination du flux énergétique du rayonnement extraterrestre du soleil. Arch. Met. Geoph. Biokl., Ser. B,3, 209–219 (1951).

    Google Scholar 

  26. Petterssen, S.: Weather Analysis and Forecasting. New York: McGraw-Hill Book Co., 2nd ed., 503 (1940).

    Google Scholar 

  27. Rasool, S. I., and S. H. Schneider: Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increase on Global Climate. Science,173, 138–141 (1971).

    Google Scholar 

  28. Schüepp, W.: Die Bestimmung der Komponenten der atmosphärischen Trübung aus Aktinometer Messungen. Arch. Met. Geoph. Biokl., Ser. B,1, 257–617 (1949).

    Google Scholar 

  29. Thekaekara, M. P., and A. Drummond: Standard Values for the Solar Constant and Its Spectral Components. Nature, Phys. Sci.,229, No. 1, 6–9 (1971).

    Google Scholar 

  30. Unsworth, M. H., and J. L. Monteith: Aerosol and Solar Radiation in Britain. Quart., J. R. Met. Soc.,98, 778–797 (1972).

    Google Scholar 

  31. Valko, P.: Vereinfachtes Auswerteverfahren für die Schüppsche Methode zur Bestimmung der atmosphärischen Trübung. Arch. Met. Geoph. Biokl., Ser. B,11, 75–107 (1960).

    Google Scholar 

  32. WMO/ICSU: Parametrization of Sub-Grid Scale Processes. GARP Publications Ser., No.8, Geneva, 120 (1972).

    Google Scholar 

  33. Zambakas, J. D.: The Diurnal Variation and Duration of the Sea-breeze at the National Observatory of Athens, Greece. Met. Mag.,102, 224–228 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karalis, J.D. The turbidity parameters in Athens. Arch. Met. Geoph. Biokl. B. 24, 25–34 (1976). https://doi.org/10.1007/BF02243382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243382

Keywords

Navigation