, Volume 42, Issue 1, pp 45–59 | Cite as

Domain decomposition method for elliptic mixed boundary value problems

  • Monika Mróz


A method for solving the elliptic second order mixed boundary value problem is discussed. The finite element problem is divided into subproblems, associated with subregions into which the region has been partitioned, and an auxiliary problem connected with intersect curves. The subproblems are solved directly, while the auxiliary problem is handled by a conjugate gradient method. The rate of the convergence of the cg-method is discussed also for the cases when the Neumann and Dirichlet boundary conditions change at points belonging to the intersecting curves. Results from numerical experiments are also reported.

AMS Subject Classifications

65N20 65F05 65F10 

Key words

Domain decomposition iterative methods substructures finite elements elliptic equation 

Die Methode der Flächenzerlegung für elliptische Probleme mit gemischten Randbedingungen


Es wird eine Methode zur Lösung elliptischer Probleme zweiter Ordnung mit gemischten Randbedingungen diskutiert. Das Finite-Elemente-Problem wird in Teilprobleme aufgespalten. Daraus resultieren Unterprobleme, welche auf die durch die Aufteilung entstehenden Teilgebiete bezogen sind, sowie ein Hilfsproblem, das mit den Trennkurven zusammenhängt. Die Unterprobleme werden direkt gelöst, das Hilfsproblem wird mittels einer Konjuguerten-Gradienten-Methode behandelt. Die Konvergenzgeschwindigkeit der KG-Methode wird auch für den Fall analysiert, daß Neumann und Dirichlet Randbedingungen auf Punkten der Trennkurven wechseln. Numerische Erfahrungen liegen vor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Andreev, V. B.: Equivalent norms of the difference functions fromW 21/2(γ). In: The study on theory of the difference schemes for elliptic and parabolic equations (Andreev, V. B., ed.), pp. 4–39. University of Moscow: Computing Center 1973.Google Scholar
  2. [2]
    Bjørstad, P. E., Widlund, O. B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal.23, 1097–1120 (1986).Google Scholar
  3. [3]
    Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam-New York: North-Holland, 1977.Google Scholar
  4. [4]
    Concus, P., Golub, G. H., O'Leary, D. P.: A generalized conjugate gradient method for the numerical solution of elliptic PDEs. In: Sparse matrix computations (Bunch, J. R., Rose, D. J., eds.), pp. 309–332. New York: Academic Press 1976.Google Scholar
  5. [5]
    Dryja, M.: A capacitance matrix method for Dirichlet problems on polygon regions. Numer. Math.39, 51–64 (1982).Google Scholar
  6. [6]
    Dryja, M.: A finite element-capacitance matrix method for elliptic problems on regions partitioned into subregions. Numer. Math.44, 153–168 (1984).Google Scholar
  7. [7]
    Dryja, M., Proskurowski, W.: Fast elliptic solvers on rectangular regions subdivided into strips. In: Advances in computer methods for PDEs, pp. 360–368. IMACS publ. 1984.Google Scholar
  8. [8]
    Grisvard, P.: Elliptic problems in nonsmooth domains, Boston, MA: Pitman 1985.Google Scholar
  9. [9]
    Oganesjan, L., Ruchovec, L.: Variational difference methods for solving elliptic problems. Akad. Nauk. Armenian SSR: Erivan 1979.Google Scholar
  10. [10]
    Proskurowski, W., Widlund, O. B.: On the numerical solution of Helmholtz equations by the capacitance matrix method. Math. Comput.30, 433–468 (1976).Google Scholar
  11. [11]
    Samarskij, A. A., Nikolajev, E. C.: Methods for solving difference equations. Moskow: Nauka 1978.Google Scholar
  12. [12]
    Swarztrauber, P., Sweet, R.: Efficient Fortran subprograms for the solution of elliptic partial differential equations. Algorithm 541. ACM Trans Math. Software5, 352–364, (1970).Google Scholar
  13. [13]
    Widlund, O. B.: An extension theorem for finite element spaces with three applications. In: Numerical Techniques in Continuum Mechanics (Hackbusch, W., Witsh, K., eds.). Proceedings of the Second GAMM-Seminar: Kiel 1986.Google Scholar
  14. [14]
    Widlund, O. B.: Lecture on DDM at the Banach Center. Semester on Numerical Analysis and Mathematical Modelling: Warsaw 1986.Google Scholar
  15. [15]
    Yakoblev, G. N.: Boundary properties of the functions from classW p(1) on a region with angle points. Doklady Academy of Sciences of U.S.R.R.140, 73–76 (1961).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Monika Mróz
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations