Advertisement

Computing

, Volume 10, Issue 1–2, pp 9–22 | Cite as

A method for obtaining bounds on eigenvalues and eigenfunctions by solving non-homogeneous integral equations

  • J. W. Burgmeier
  • M. R. Scott
Article

Abstract

A new technique is presented for obtaining upper and lower bounds on eigenvalues and eigenfunctions for linear integral equations. The method is unique in that the bounds are obtained by solving non-homogeneous equations. In order to solve the non-homogeneous equations, non-linear sequence-to-sequence transformations are used to accelerate convergence of the Neumann series inside the radius of convergence and are used to “sum” the Neumann series outside the radius of convergence. Since the reciprocals of the eigenvalues appear as poles in the solution of the non-homogeneous equation, a very sensitive bounding criterion can be given. The method applies to quite general kernels, and has been successfully applied to symmetric and non-symmetric kernels. In addition, thekth eigenfunction may be obtained without a knowledge of the first (k−1) eigenvalues or eigenfunctions.

Keywords

Integral Equation Lower Bound Computational Mathematic Neumann Series Linear Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Eine Methode zur Berechnung der Grenzen von Eigenwerten und Eigenfunktionen durch Lösen inhomogener Integralgleichungen

Zusammenfassung

Es wird eine neue Methode zur Berechnung oberer und unterer Grenzen der Eigenwerte und Eigenfunktionen linearer Integralgleichungen dargestellt. Dadurch, daß die Lösungen inhomogener Gleichungen diese Grenzwerte bestimmen, ist die Methode neuartig. Zur Lösung der inhomogenen Gleichungen werden nichtlineare Reihentransformationen verwendet um die Konvergenz der Neumann-Reihen innerhalb des Konvergenzradius zu beschleunigen und werden ferner zur Summierung der Neumann-Reihen außerhalb des Konvergenzradius benützt. Da die reziproken Eigenwerte Wurzelsingularitäten der inhomogenen Gleichung sind, kann eine sehr empfindliche Begrenzungsbedingung angegeben werden. Die Methode bezieht sich auf ganz allgemeine Kerne und konnte im Falle symmetrischer sowohl wie unsymmetrischer Kerne angewandt werden. Ferner kann diek-te Eigenfunktion ohne Kenntnis der ersten (k−1) Eigenwerte oder Eigenfunktionen berechnet werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brakhage, H.: A special method of successive approximations for Fredholm integral equations. Duke Math. J.15, 197–206 (1948).CrossRefGoogle Scholar
  2. [2]
    Burgmeier, J. W., andM. R. Scott: Convergence of Picard's method for |λ|>|λ1|. Amer. Math. Mon.77, No. 8, 865–867 (1970).Google Scholar
  3. [3]
    Burgmeier, J. W.: On the reduction of a class of Fredholm integral equations to equivalent matrix problems. J. Math. Anal. Appl.31, 529–544 (1970).CrossRefGoogle Scholar
  4. [4]
    Cryer, C. W.: On the calculation of the largest eigenvalue of an integral equation. Numer. Math.10, 165–176 (1967).CrossRefGoogle Scholar
  5. [5]
    Householder, A. S.: The Numerical Treatment of a Single Non-linear Equation. New York: McGraw-Hill. 1970.Google Scholar
  6. [6]
    Roark, A. L., andG. M. Wing: A method for computing the eigenvalues of certain integral equations. Numer. Math.7, 159–170 (1965).CrossRefGoogle Scholar
  7. [7]
    Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys.34, 1–42 (1955).Google Scholar
  8. [8]
    Slepian, D., andE. Sonnenblick: Eigenvalues associated with prolate spheriodal wave functions of zero order. Bell System Tech. J.44, 1745–1759 (1965).Google Scholar
  9. [9]
    Tricomi, F. G.: Integral Equations. New York: Interscience. 1957.Google Scholar
  10. [10]
    Wing, G. M.: On a method for obtaining bounds on the eigenvalues of certain integral equations. J. Math. Anal. Appl.11, 160–174 (1965).CrossRefGoogle Scholar
  11. [11]
    Wielandt, H.: Error bounds for eigenvalues of symmetric integral equations. Proc. Symp. Appl. Math. VI, pp. 261–282. New York-Toronto-London: 1956.Google Scholar
  12. [12]
    Wynn, P.: On a device for computing thee m (Sn) transformation. MTAC10, 91–96 (1956).Google Scholar
  13. [13]
    Wynn, P.: Singular rules for certain non-linear algorithms. B. I. T.3, 175–195 (1963).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • J. W. Burgmeier
    • 1
  • M. R. Scott
    • 2
  1. 1.University of VermontBurlingtonUSA
  2. 2.Sandia LaboratoryAlbuquerqueUSA

Personalised recommendations