Skip to main content
Log in

Successive overrelaxation method with projection for finite element solutions applied to the Dirichlet problem of the nonlinear elliptic equation Δu-bu2

Sukzessive Überrelaxationsverfahren mit Projektion zu finiten Elementlösungen für das Dirichletsche Problem bei der nichtlinearen elliptischen Differentialgleichung Δu=bu2

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

this study is a continuation of a previous paper [Computing 38 (1987), pp.117–132]. In this paper, we consider the successive overrelaxation method with projection for obtaining finite element solutions applied to the Dirichlet problem of the nonlinear elliptic equation

$$\begin{gathered} \Delta u = bu^2 in\Omega , \hfill \\ u = g(x)on\Gamma . \hfill \\ \end{gathered} $$

. Some numerical examples are given to illustrate the effectiveness.

Zusammenfassung

Diese Veröffentlichung ist eine Fortsetzung einer früheren Studie [Computing 38 (1987), S. 117–132]. In dieser Arbeit wird das sukzessive Überrelaxationsverfahren mit Projektion zu finiten Elementlösungen für das Dirichletsche Problem

$$\begin{gathered} \Delta u = bu^2 in\Omega , \hfill \\ u = g(x)auf \Gamma . \hfill \\ \end{gathered} $$

beachtet. An einigen numerischen Beispielen wird die Effektivität aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablow, C. M., Perry, C. L.: Iterative solutions of the Dirichlet problem for Δu=u 2. SIAM J. Appl. Math.7, 459–467 (1959).

    Google Scholar 

  2. Aubin, J. P.: Applied Functional Analysis. New York: John Wiley 1979.

    Google Scholar 

  3. Brewster, M. E., Kannan, R.: Nonlinear successive over-relaxation. Numer. Math.44, 309–315 (1984)

    Google Scholar 

  4. Ciarlet, P. G.: Discrete maximum principle for finite-difference operators. Aequationes Math.4, 338–352 (1970).

    Google Scholar 

  5. Ciarlet, P. G., Raviart, P. A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2, 17–31 (1973).

    Google Scholar 

  6. Concus, P.: Numerical solution of the minimal equation. Math. Comp.21, 340–350 (1967).

    Google Scholar 

  7. Concus, P.: Numerical solution of the nonlinear magnetostatistic-field equation in two dimension. J. Comput. Phys.1, 330–342 (1967).

    Google Scholar 

  8. Cryer, C. W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control9, 385–392 (1971).

    Google Scholar 

  9. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. New York: Springer 1984.

    Google Scholar 

  10. Goldstein, A. A.: Constructive Real Analysis. New York: Harper & Row 1967.

    Google Scholar 

  11. Ishihara, K.: Finite element approximations applied to the nonlinear boundary value problem Δu=bu 2. Publ. Res. Inst. Math. Sci.18, 17–34 (1982).

    Google Scholar 

  12. Ishihara, K.: Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem. Numer. Math.43, 419–437 (1984).

    Google Scholar 

  13. Ishihara, K.: Finite element solutions for radiation cooling problems with nonlinear boundary conditions. RAIRO Modélisation Math. Anal. Numér.20, 461–477 (1986).

    Google Scholar 

  14. Ishihara, K.: Explicit monotone iterations providing upper and lower bounds for finite element solution with nonlinear radiation boundary conditions. Computing37, 137–149 (1986).

    Google Scholar 

  15. Ishihara, K.: Successive overrelaxation method with projection for finite element solutions of nonlinear radiation cooling problems. Computing38, 117–132 (1987).

    Google Scholar 

  16. Ishihara, K., Fukunaga, Y., Yamamoto, T.: Alternating iterations of finite element approxiaations applied to the nonlinear boundary value problem Δu=bu 2. Bull. Kyushu Inst. Tech. (Math. Natur. Sci.)32, 31–42 (1985).

    Google Scholar 

  17. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  18. Ortega, J. M., Rockoff, M. L.: Nonlinear difference equations and Gauss-Seidel type iterative methods. SIAM J. Numer. Anal.3, 497–513 (1966).

    Google Scholar 

  19. Pohozaev, S. I.: The Dirichlet problem for the equation Δu=u 2. Soviet Math. Dokl.1, 1143–1146 (1960).

    Google Scholar 

  20. Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1967.

    Google Scholar 

  21. Schechter, S.: Iteration methods for nonlinear problems. Trans. Amer. Math. Soc.104, 179–189 (1962).

    Google Scholar 

  22. Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.

    Google Scholar 

  23. White, R. E.: An Introduction to the Finite Element Method with Applications to Nonlinear Problems. New York: John Wiley 1985.

    Google Scholar 

  24. Ishihara, K.: Strong and weak discrete maximum principles for matrices associated with elliptic problems. Linear Algebra Appl.88/89, 431–448 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, K. Successive overrelaxation method with projection for finite element solutions applied to the Dirichlet problem of the nonlinear elliptic equation Δu-bu2 . Computing 40, 51–65 (1988). https://doi.org/10.1007/BF02242189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242189

AMS Subject Classifications

Key words

Navigation