Skip to main content
Log in

A relation between Newton and Gauss-Newton steps for singular nonlinear equations

Eine Beziehung zwischen Newton-Schritten und Gauß-Newton-Schritten bei singulären nichtlinearen Gleichungssystemen

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The Gauss-Newton step belonging to an appropriately chosen bordered nonlinear system is analyzed. It is proved that the Gauss-Newton step calculated after a sequence of Newton steps is equal to the doubled Newton step within the accuracy ofO(‖x−x *2). The theoretical insight given by the proof can be exploited to derive a Gauss-Newton-like algorithm for the solution of singular equations.

Zusammenfassung

In der Arbeit wird der Gauß-Newton-Schriftt für ein geeignet gewähltes erweitertes nichtlineares System analysiert. Es wird bewiesen, daß ein im Anschluß an eine Folge von Newton-Schritten berechneter Gauß-Newton-Schritt einem doppelten Newton-Schritt mit einer Genauigkeit vonO(‖x−x *2) entspricht. Die beim Beweis gewonnenen theoretischen Einsichten können genutzt werden, um einen Gauß-Newton-ähnlichen Algorithmus zur Lösung singulärer Gleichungssysteme abzuleiten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griewank, A., Osborne, M. R.: Newton's method for singular problems when the dimension of the null space is >1. SIAM J. Numer Anal.18, 145–149 (1981).

    Google Scholar 

  2. Griewank, A.: On solving nonlinear equations with simple singularities nearly singular solutions. SIAM Review27, 537–563 (1985).

    Google Scholar 

  3. Kelley, C. T., Suresh, R.: A new acceleration method for Newton's method at singular points. SIAM J. Number. Anal.20, 1001–1009 (1983).

    Google Scholar 

  4. Frank, P., Schnabel, R. B.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal.21, 815–843 (1984).

    Google Scholar 

  5. Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. Berlin: VEB Deutscher Verlag der Wissenschaften 1979.

    Google Scholar 

  6. Weber, H., Werner, W.: On the accurate determination of nonisolated solutions of nonlinear equations. Computing26, 315–326 (1981).

    Google Scholar 

  7. Griewank, A., Reddien, G. W.: Characterization and computation of generalized turning points. SIAM J. Numer. Anal.21, 176–185 (1984).

    Google Scholar 

  8. Yamamoto, N.: Regularization of solutions of nonlinear equations with singular Jacobian matrices. J. Inform. Proc.7, 16–21 (1984).

    Google Scholar 

  9. Moore, G., Spence, A.: The calculation of turning points of nonlinear equations. SIAM J. Numer. Anal.17, 567–576 (1980).

    Google Scholar 

  10. Pönisch, G.: Computing simple bifurcation points using a minimally extended system of nonlinear equations. Computing35, 277–294 (1985).

    Google Scholar 

  11. Schwetlick, H.: Algorithms for finite-dimensional turning point problems for viewpoint to relationships with unconstrained optimization. In: Numerical methods for bifurcation problems (Küpper, T., Mittelmann, H. D., Weber, H., eds.), pp. 459–479 (ISNM 70). Basel: Birkhäuser 1984.

    Google Scholar 

  12. Greiwank, A., Osborne, M. R.: Analysis of Newton's method at irregular singularities. SIAM J. Numer. Anal.20, 747–773 (1983).

    Google Scholar 

  13. Kubiček, M., Holodniok, M.: Numerical determination of bifurcation points in steady state and periodic solutions — numerical algorithms and examples. In: Numerical methods for bifurcation problems (Küpper, T., Mittelmann, H. D., Weber, H., eds.), pp. 247–270 (ISNM 70). Basel: Birkhäuser 1984.

    Google Scholar 

  14. Menzel, R.: Numerical determination of multiple bifurcation points. In: Numerical methods for bifurcation problems (Küpper, T., Mittelmann, H. D., Weber, H., eds.), pp. 310–318 (ISNM 70). Basel: Birkhäuser 1984.

    Google Scholar 

  15. Menzel, R.: On solving nonlinear least-squares problems in case of rankdeficient Jacobians. Computing34, 63–72 (1985).

    Google Scholar 

  16. Rall, L. B.: Convergence of the Newton process to multiple solutions. Numer. Math.9, 23–37 (1966).

    Google Scholar 

  17. Pönisch, G., Schwetlick, H.: Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter. Computing26, 107–121 (1981).

    Google Scholar 

  18. Hoy, A.: An efficiently implementable Gauss-Newton-like method for solving singular nonlinear equations. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoy, A. A relation between Newton and Gauss-Newton steps for singular nonlinear equations. Computing 40, 19–27 (1988). https://doi.org/10.1007/BF02242187

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242187

AMS Subject Classification

Key words

Navigation