, Volume 26, Issue 2, pp 91–105 | Cite as

An adaptive, multi-level method for elliptic boundary value problems

  • R. E. Bank
  • A. H. Sherman


Subroutine PLTMG is a Fortran program for solving self-adjoint elliptic boundary value problems in general regions ofR2. It is based on a piecewise linear triangle finite element method, an adaptive grid refinement procedure, and a multi-level iterative method to solve the resulting sets of linear equations. In this work we describe the method and present some numerical results and comparisons.

AMS (MOS) Subject Classifications (1970)


Key words

Adaptive mesh refinement multigrid methods finite element methods 

Eine adaptive mehrstufige Methode für elliptische Randwertprobleme


Das Unterprogramm PLTMG ist ein FORTRAN-Programm zur Lösung selbstadjungierter elliptischer Randwertprobleme für beliebige Bereiche desR2. Es basiert auf einer stückweise-linearen Finite-Element-Methode, einer adaptiven Gitterverfeinerungsmethode und einer mehrstufigen iterativen Methode zur Lösung des resultierenden Systems linearer Gleichungen. In dieser Arbeit wird die Methode beschrieben, und einige numerische Ergebnisse und Vergleiche werden dargelegt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15, 736–754 (1978).CrossRefGoogle Scholar
  2. [2]
    Babuška, I., Rheinboldt, W. C.: Analysis of optimal finite-element meshes inR 1. Math. of Comp.33, 435–464 (1979).Google Scholar
  3. [3]
    Bakhvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator. Zh. Vÿchisl. Mat. mat.6, 861–885 (1966).Google Scholar
  4. [4]
    Bank, R. E., Dupont, T.: An optimal order process for solving finite element equations. (Revised January 1978), submitted.Google Scholar
  5. [5]
    Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. of Comp.31, 333–390 (1977).Google Scholar
  6. [6]
    Grimes, R. G., Kincaid, D. R., MacGregor, W. I., Young, D. M.: Adaptive iterative algorithms using symmetric sparse storage. Report CNA 139, Center for Numerical Analysis, University of Texas at Austin, August, 1978.Google Scholar
  7. [7]
    Eisenstat, S. C., Gursky, M. C., Schultz, M. H., Sherman, A. H.: Yale sparse matrix package I: The symmetric codes. Research Report No. 112, Dept. of Computer Science, Yale University, 1977.Google Scholar
  8. [8]
    Hackbusch, W.: On the convergence of multi-grid iterations. Beiträge Numer. Math.9 (to appear).Google Scholar
  9. [9]
    Nicolaides, R. A.: On thel 2 convergence of an algorithm for solving finite element equations. Math. of Comp.31, 892–906 (1977).Google Scholar
  10. [10]
    Oden, J. T., Reddy, J. N.: An introduction to the mathematical theory of finite elements. J. Wiley 1976.Google Scholar
  11. [11]
    Strang, G., Fix, G.: An analysis of the finite element method. Prentice-Hall 1973.Google Scholar
  12. [12]
    Varga, R. S.: Matrix iterative analysis. Prentice-Hall 1962.Google Scholar
  13. [13]
    Young, D.: Iterative solution of large linear systems. Academic Press 1971.Google Scholar
  14. [14]
    Bank, R. E., Sherman, A. H.: Algorithmic aspects of the multi-level solution of finite element equations. Report CNA 144, Center for Numerical Analysis, University of Texas at Austin, October 1978.Google Scholar
  15. [15]
    Astrakhantsev, G. P.: An iterative method of solving elliptic net problems. Zh. Vÿchisl. Mat. mat.11, 439–448 (1971).Google Scholar
  16. [16]
    Chandra, R.: Conjugate gradient methods for partial differential equations. Ph. D. Dissertation, Yale University, 1978.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. E. Bank
    • 2
  • A. H. Sherman
    • 1
  1. 1.Department of Computer SciencesUniversity of Texas at AustinAustinUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations