Computing

, Volume 33, Issue 2, pp 107–129 | Cite as

Interated defect correction for differential equations part II: Numerical experiments

  • R. Frank
  • F. Macsek
  • C. W. Ueberhuber
Contributed Papers

Abstract

In Part I of this paper a large number of Iterated Defect Correction (IDeC) algorithms have been integrated into one model algorithm and jointly analyzed. The demonstration of the practical usefulness of those theoretical results requires numerical experiments with many different IDeC methods. In this part of the paper the results of a number of representative empirical investigations of various IDeC algorithms (for ordinary and partial differential equations) are presented.

Keywords

Differential Equation Differential Equation Part Numerical Experiment Computational Mathematic Theoretical Result 

Iterierte Defektkorrektur für Differentialgleichungen. Teil II: Numerische Experimente

Zusammenfassung

Im Teil I dieser Arbeit wurden viele konkrete IDeC (Iterierte Defektkorrektur)-Algorithmen in einem Modellalgorithmus zusammengefaßt und gemeinsam analysiert. Das Aufzeigen der praktischen Nützlichkeit dieser theoretischen Resultate erfordert numerische Experimente mit einer Vielzahl von verschiedenen IDeC-Verfahren. In diesem Teil der Arbeit werden die Resultate einer Reihe von repräsentativen empirischen Untersuchungen an einer Reihe verschiedener IDeC-Algorithmen (für gewöhnliche und partielle Differentialgleichungen) präsentiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boehmer, K.: Discrete Newton methods and iterated defect corrections. Num. Math.37, 167–192 (1981).CrossRefGoogle Scholar
  2. [2]
    Frank, R.: The method of iterated defect correction and its application to two-point boundary value problems. Part I: Num. Math.25, 409–419 (1976); Part II: Num. Math.27, 407–420 (1977).CrossRefGoogle Scholar
  3. [3]
    Frank, R., Hertling, J.: Die Anwendung der iterierten Defektkorrektur auf das Dirichletproblem. Beiträge zur Numerischen Mathematik7, 19–31 (1979).Google Scholar
  4. [4]
    Frank, R., Hertling, J., Monnet, J.-P.: The application of iterated defect correction to variational methods for elliptic boundary value problems. Computing30, 121–135 (1983).Google Scholar
  5. [5]
    Frank, R., Hertling, J., Ueberhuber, C. W.: Iterated defect correction based on estimates of the local discretization error. Report No. 18, Inst. f. Appl. a. Num. Math., Technical University of Vienna, 1976.Google Scholar
  6. [6]
    Frank, R., Hertling, J., Ueberhuber, C. W.: An extension of the application of interated deferred corrections. Math of Comp.31, 907–915 (1977).Google Scholar
  7. [7]
    Frank, R., Macsek, F., Ueberhuber, C. W.: Asymptotic error expansions for defect correction iterates. Computing32, 115–125 (1984).Google Scholar
  8. [8]
    Frank, R., Strobl, N., Ueberhuber, C. W.: Die lokale Variante der IDeC bei Zweipunkt-Randwertproblemen. Report No. 35, Inst. f. Appl. a. Num. Math., Technical University of Vienna, 1978.Google Scholar
  9. [9]
    Frank, R., Ueberhuber, C. W.: Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations. BIT17, 146–159 (1977).CrossRefGoogle Scholar
  10. [10]
    Frank, R., Ueberhuber, C. W.: Iterated defect correction for differential equations. Part I: Theoretical results. Computing20, 207–228 (1978).Google Scholar
  11. [11]
    Hildebrand, F. B.: Introduction to numerical analysis, 2nd ed. New York: McGraw-Hill 1974.Google Scholar
  12. [12]
    Messner, S.: Experimentelle Untersuchungen des asymptotischen Verhaltens verschiedener Realisierungen der iterierten Defektkorrektur. Diplomarbeit, Technical University of Vienna, 1978.Google Scholar
  13. [13]
    Shampine, L. F., Gordon, M. K.: Computer solution of ordinary differential equations, the initial value problem. San Francisco: Freeman 1975.Google Scholar
  14. [14]
    Stetter, H. J.: Global error estimation in Adams PC-codes. ACM Transactions on Mathematical Software5, 415–430 (1979).CrossRefGoogle Scholar
  15. [15]
    Swartz, B. K., Varga, R. S.: Error bounds for spline and L-spline interpolation. J. of Approximation Theory6, 6–49 (1972).CrossRefGoogle Scholar
  16. [16]
    Ueberhuber, C. W.: Implementation of defect correction methods for stiff differential equations. Computing23, 205–232 (1979).Google Scholar
  17. [17]
    Wanek, W.: Fehlereinschätzungen bei Mehrschrittverfahren mittels Defektkorrektur. Diplomarbeit, Technical University of Vienna, 1979.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. Frank
    • 1
  • F. Macsek
    • 1
  • C. W. Ueberhuber
    • 1
  1. 1.Institut für Angewandte und Numerische MathematikTechnische Universität WienWienAustria

Personalised recommendations