Skip to main content
Log in

Successive overrelaxation method with projection for finite element solutions of nonlinear radiation cooling problems

Sukzessive Überrelaxationsverfahren mit Projektion zu finiten Elementlösungen von nichtlinearen Radiationskühlungsaufgaben

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the successive overrelaxation method with projection for obtaining the finite element solutions under the nonlinear radiation boundary conditions. In particular we establish the convergence of the successive overrelaxation method with projection. Some numerical results are also given to illustrate the usefulness.

Zusammenfassung

In dieser Arbeit betrachten wir das sukzessive Überrelaxationsverfahren mit Projektion zu finiten Elementlösungen unter nichtlinearen Radiationsrandbedingungen, insbesondere den Nachweis einer Konvergenz des sukzessiven Überrelaxationsverfahrens mit Projektion. An einigen numerischen Ergebnissen soll die Anwendbarkeit illustriert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J. P.: Applied Functional Analysis. New York: John Wiley 1979.

    Google Scholar 

  2. Brewster, M. E., Kannan, R.: Nonlinear successive over-relaxation. Numer. Math.44, 309–315 (1984).

    Google Scholar 

  3. Brewster, M. E., Kannan, R.: Global convergence of nonlinear successive overrelaxation via linear theory. Computing34, 73–79 (1985).

    Google Scholar 

  4. Ciarlet, P. G.: Discrete maximum principle for finite-difference operators. Aequationes Math.4, 338–352 (1970).

    Google Scholar 

  5. Ciarlet, P. G.: Introduction à l'Analyse Numérique Matricielle et à l'Optimisation. Paris: Masson 1982.

    Google Scholar 

  6. Ciarlet, P. G., Raviart, P. A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2, 17–31 (1973).

    Google Scholar 

  7. Cohen, D. S.: Generalized radiation cooling of a convex solid. J. Math. Anal. Appl.35, 503–511 (1971).

    Google Scholar 

  8. Concus, P.: Numerical solution of the minimal surface equation. Math. Comp.21, 340–350 (1967).

    Google Scholar 

  9. Concus, P.: Numerical solution of the nonlinear magnetostatic-field equation in two dimensions. J. Comput. Phys.1, 330–342 (1967).

    Google Scholar 

  10. Cryer, C. W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control9, 385–392 (1971).

    Google Scholar 

  11. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. New York: Springer-Verlag 1984.

    Google Scholar 

  12. Glowinski, R., Marrocco, A.: Analyse numérique du champ magnétique d'un altenateur par éléments finis et sur-relaxation ponctuelle non linéaire. Compt. Methods Appl. Mech. Engrg.3, 55–85 (1974).

    Google Scholar 

  13. Goldstein, A. A.: Constructive Real Analysis. New York: Harper & Row 1967.

    Google Scholar 

  14. Ishihara, K.: Finite element solutions for radiation cooling problems with nonlinear boundary conditions. RAIRO Modélisation Mathématique et Analyse Numérique20, 461–477 (1986).

    Google Scholar 

  15. Ishihara, K.: Explicit monotone iterations providing upper and lower bounds for finite element solution with nonlinear radiation boundary conditions. Computing37, 137–149 (1986).

    Google Scholar 

  16. Olmstead, W. E.: Temperature distribution in a convex solid with nonlinear radiation boundary condition. J. Math. Mech.15, 899–908 (1966).

    Google Scholar 

  17. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  18. Ortega, J. M., Rockoff, M. L.: Nonlinear difference equations and Gauss-Seidel type iterative methods. SIAM J. Numer. Anal.3, 497–513 (1966).

    Google Scholar 

  19. Schechter, S.: Iteration methods for nonlinear problems. Trans. Amer. Math. Soc.104, 179–189 (1962).

    Google Scholar 

  20. Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.

    Google Scholar 

  21. White, R. E.: An Introduction to the Finite Element Method with Applications to Nonlinear Problems. New York: John Wiley 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, K. Successive overrelaxation method with projection for finite element solutions of nonlinear radiation cooling problems. Computing 38, 117–132 (1987). https://doi.org/10.1007/BF02240177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02240177

AMS Subject Classifications

Key words

Navigation