Advertisement

Computing

, Volume 35, Issue 1, pp 39–49 | Cite as

Hierarchical bases of finite-element spaces in the discretization of nonsymmetric elliptic boundary value problems

  • H. Yserentant
Article

Abstract

In the case of symmetric and positive definite plane elliptic boundary value problems, the condition numbers of the stiffness matrices arising from finite element discretizations grow only quadratically with the number of refinement levels, if one uses hierarchical bases of the finite element spaces instead of the usual nodal bases; see [9]. Here we show that results of the same type hold for nonsymmetric problems and we describe the interesting consequences for the solution of the discretized problems by Krylov-space methods.

AMS Subject Classifications

65F10 65N20 65N30 

Key words

Elliptic boundary value problems finite elements conjugate gradient type methods fast solvers multigrid methods 

Hierarchische Basen von Finite-Element-Räumen bei der Diskretisierung von nicht-symmetrischen elliptischen Randwertproblemen

Zusammenfassung

Im Fall positiv definiter und symmetrischer ebener elliptischer Randwertprobleme wachsen die Konditionszahlen der Steifigkeitsmatrizen, die man bei der Diskretisierung solcher Probleme mit der Methode der finiten Elemente erhält, nur quadratisch mit der Anzahl der Verfeinerungsstufen, wenn man die üblichen Knotenbasen der Finite-Element-Räume durch hierarchische Basen ersetzt; siehe [9]. In dieser Arbeit zeigen wir, daß Ergebnisse gleichen Typs für nichtsymmetrische Probleme gelten, und wir beschreiben die interessanten Konsequenzen, die diese Resultate für die Lösung der diskretisierten Probleme mit Krylov-Raum-Methoden haben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Axelsson, O.: Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations. Linear Algebra Appl.29, 1–16 (1980).Google Scholar
  2. [2]
    Eisenstat, St. C., Elman, H. C., Schultz, M. H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal.20, 345–357 (1983).Google Scholar
  3. [3]
    Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp.37, 105–126 (1981).Google Scholar
  4. [4]
    Saad, Y.: The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal.19, 485–506 (1982).Google Scholar
  5. [5]
    Saad, Y.: Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.5, 203–228 (1984).Google Scholar
  6. [6]
    Stoer, J.: Solution of large linear systems of equations by conjugate gradient type methods. In: Mathematical Programming, the State of the Art (Bachem, A., Grötschel, M., Korte, B., eds.). Berlin-Heidelberg-New York-Tokio: Springer 1983.Google Scholar
  7. [7]
    Vinsome, P. K. W.: Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In: Proc. Forth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, 149–159, 1976.Google Scholar
  8. [8]
    Young, D. M., Jea, K. C.: Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Linear Algebra Appl.34, 159–194 (1980).Google Scholar
  9. [9]
    Yserentant, H.: On the multi-level splitting of finite element spaces. Bericht Nr. 21, Institut für Geometrie und Praktische Mathemtik der RWTH Aachen, 1983.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Yserentant
    • 1
  1. 1.Institut für GeometriePraktische Mathematik der RWTH AachenAachenGermany

Personalised recommendations