Advertisement

Computing

, Volume 38, Issue 3, pp 269–273 | Cite as

Grid strategy and high accuracy via defect corrections for the Kreiss-method for stiff boundary value problems

  • K. Böhmer
  • T. Römer
Short Communications
  • 23 Downloads

Abstract

A grid strategy is developed via the first step of a defect correction applied to the Kreiss method. The full defect corrections are used on the final grid to compute high accuracy approximations efficiently.

AMS Subject Classifications

65B05 65L10 

Key words

Stiff boundary value problems grid strategy defect corrections Kreiss method 

Gitterstrategie und Genauigkeitserhöhungen mittels Defektkorrektur für das Keiss-Verfahren für steife

Zusammenfassung

Der erste Schriff eines Defektkorrekturverfahrens angewandt auf das Kreiss-Verfahren ermöglicht eine Gitterstrategie. Das vollständige Defektkorrekturverfahren wird auf dem Endgitter zur effizienten Berechnung von Approximationen hoher Genauigkeit herangezogen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Böhmer, K.: Discrete methods and iterated defect corrections. Numer. Math.37, 167–192 (1981).CrossRefGoogle Scholar
  2. [2]
    Böhmer, K., Hamker, P., Stetter, H. J.: The defect correction approach. in Defect correction methods, theory and applications. Springer-Verlag Wien, New York, Comp. Suppl.5, 1985, 1–32.Google Scholar
  3. [3]
    Böhmer, K., Römer, Th.: Discrete Newton Method and Grid Strategy for the Kreiss Method for Stiff Boundary Value Problems, 1985.Google Scholar
  4. [4]
    Böhmer, K., Stetter, H. J.: Defect correction methods, theory and applications. Springer-Verlag Wien, New York, Comp. Suppl.5, 1984.Google Scholar
  5. [5]
    Brown, D. L.: A numerical method for singular perturbation problems with turning points, to appear in proceedings of 1984 Vancouver two-point boundary value conference. Birkhäuser 1985.Google Scholar
  6. [6]
    Kreiss, B., Kreiss, H. O.: Numerical methods for singular perturbation problems. SIAM J. Numer. Anal.18, 262–276 (1981).CrossRefGoogle Scholar
  7. [7]
    Kreiss, H.-O., Nichols, N. K., Brown, D. L.: Numerical methods for stiff two-point boundary value problems, Applied Mathematics, California Institute of technology, Pasadena, California, to appear in SIAM J. Number. Anal.Google Scholar
  8. [8]
    Pearson, C. E.: On a differential equation of boundary layer type. J. Math. Phys.47, 134–154 (1968).Google Scholar
  9. [9]
    Römer, Th.: Schrittweitenstrategien für steife Randwertprobleme, insbesondere Turning-point-Probleme. MA Thesis, University of Marburg, 1984.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • K. Böhmer
    • 1
  • T. Römer
    • 1
  1. 1.Fachbereich Mathemtik der Philipps-UniversitätMarburgGermany

Personalised recommendations