The American Journal of Digestive Diseases

, Volume 11, Issue 9, pp 695–701 | Cite as

Differentiation of parotid and pancreatic amylase in human serum

  • J. Edward Berk
  • Shinichiro Hayashi
  • Ronald L. Searcy
  • Nicholas C. HightowerJr.
Article

Summary

Amylase isolated chromatographically from normal human serum yields a polymorphic pattern of saccharogenic activity when subjected to disc electrophoresis on polyacrylamide gel. Parotid gland and salivary amylase exhibits an electrophoretic mobility similar to the more anodal peak observed in normal serum. The slower moving electrophoretic fraction of saccharogenic activity in normal serum appears to correspond to amylase derived from pancreatic tissue or that contained in duodenal aspirate. Differentiation of starch-hydrolyzing enzymes of various tissue origins in serum by means of disc electrophoresis may serve to enhance the clinical significance of the amylase determination.

Keywords

Enzyme Polyacrylamide Amylase Human Serum Electrophoretic Mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aw, S. E. Separation of urinary isoamylases on cellulose acetate.Nature 209:298, 1966.Google Scholar
  2. 2.
    Berk, J. E., andSearcy, R. L. Isoenzymes of serum amylase in man.Gastroenterology 48:651, 1965.PubMedGoogle Scholar
  3. 3.
    Berk, J. E., Searcy, R. L., Hayashi, S., andUjihira, I. Distribution of serum amylase in man and animals.JAMA 129:389, 1965.Google Scholar
  4. 4.
    Dreiling, D. A., Janowitz, H. D., andJosephberg, L. J. Serum iso-amylases. An electrophoretic study of the blood amylase and the patterns observed in pancreatic disease.Ann Intern Med 58:235, 1963.Google Scholar
  5. 5.
    McGeachin, R. L., andLewis, J. P. Electrophoretic behavior of serum amylase.J Biol Chem 234:795, 1959.PubMedGoogle Scholar
  6. 6.
    Muus, J., andVnenchak, J. M. Isoamylases of salivary amylase.Nature 204:283, 1964.PubMedGoogle Scholar
  7. 7.
    Norby, S. Electrophoretic non-identity of human salivary and pancreatic amylases.Exp Cell Res 36:663, 1964.CrossRefPubMedGoogle Scholar
  8. 8.
    Rahman, M. A. Distribution pattern of amylase activity in serum proteins.Nature 205:973, 1965.Google Scholar
  9. 9.
    Searcy, R. L., Ujihira, I., Hayashi, S., andBerk, J. E. An intrinsic disparity between amyloclastic and saccharogenic estimations of human serum isoamylase activities.Clin Chim Acta 9:505, 1964.CrossRefGoogle Scholar
  10. 10.
    Searcy, R. L., Hayashi, S., Hardy, E. M., andBerk, J. E. The interaction of human serum protein fractions with the starch-iodine complex.Clin Chim Acta 12:631, 1965.CrossRefPubMedGoogle Scholar
  11. 11.
    Sick, K., andNielsen, J. T. Genetics of amylase isozymes in the mouse.Hereditas (Lund) 51:291, 1964.Google Scholar
  12. 12.
    Ujihira, I., Searcy, R. L., Berk, J. E., andHayashi, S. A saccharogenic method for estimating electrophoretic and chromatographic distribution of human serum amylase.Clin Chem 11:97, 1965.PubMedGoogle Scholar
  13. 13.
    Wilding, P. Use of gel filtration in the study of human amylase.Clin Chim Acta 8:918, 1963.CrossRefGoogle Scholar
  14. 14.
    Wilding, P. The electrophoretic nature of human amylase and the effect of protein on the starch-iodine reaction.Clin Chim Acta 12:97, 1965.CrossRefPubMedGoogle Scholar

Copyright information

© Hoeber Medical Division • Harper & Row, Publishers, Incorporated 1966

Authors and Affiliations

  • J. Edward Berk
    • 1
    • 2
    • 3
  • Shinichiro Hayashi
    • 1
    • 2
    • 3
  • Ronald L. Searcy
    • 1
    • 2
    • 3
  • Nicholas C. HightowerJr.
    • 1
    • 2
    • 3
  1. 1.From the Departments of Medicine and PathologyUniversity of California, California College of MedicineLos Angeles
  2. 2.the Los Angeles County General Hospital (Unit II)Los Angeles
  3. 3.the Section of Clinical Physiology, Scott and White ClinicTemple

Personalised recommendations