Journal of Neuro-Visceral Relations

, Volume 31, Issue 1, pp 11–25 | Cite as

Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix)

  • W. B. Quay
  • J. Ariëns Kappers
  • J. F. Jongkind
Article

Summary

We studied microscopically in serial sections the pinealin situ in brain tissue blocks from 27 specimens of adult snakes of the speciesNatrix natrix. A median, dorsal meningeal fascicle of nerve fibers appeared to be the primary and most consistent source of the pineal's innervation. By the Hillarp-Falck technique these fibers were shown to be catecholamine-containing (green-fluorescing) and to give rise to a rich intrapineal fiber system coursing primarily in the stromal channels along the blood vessels but also giving off branches into or on the parenchymal lobules. Basally, the pineal's stalk was seen to vary in its size and composition. Its variable, mostly small, non-fluorescent and contorted nerve fiber content could be largely followed to the region of the posterior commissure. It was thought that these fibers could possibly be connected with this region, and to be without necessarily any functional significance as pineal innervation is concerned. Further investigation of the exact origin and course of the fibers is, however, needed.

The pineal parenchymal cells were found to be yellow-fluorescing, in line with biochemical evidence for the presence of 5-hydroxytryptamine. Increase and generality of distribution of the yellow parenchymal fluorescence followed when animals were injected with iproniazid, a monoamine oxidase inhibitor.

The pineal of snakes as typified byNatrix natrix appears to be at least supperficially similar and evolutionarily convergent with respect to the pineal of some mammals in regard to morphology, innervation and distribution of catecholamines and 5-hydroxytryptamine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargmann, W.: Die Epiphysis cerebri. In:Handbuch der mikroskopischen Anatomie des Menschen, W. v. Möllendorf, ed., VI/4, 309–502, 1943, Berlin: Springer.Google Scholar
  2. Bertler, A., B. Falck, andC. Owman: Studies on 5-hydroxytryptamine stores in pineal gland of rat. Acta physiol. Scand.63, suppl. 239, 1–18 (1964).Google Scholar
  3. Corrodi, H., andG. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review of the methodology. J. Histochem. Cytochem.15, 65–78 (1967).Google Scholar
  4. Falck, B.: Observations on the possibilities of the cellular localization of monoamine by a fluorescence method. Acta physiol. Scand.56, suppl. 197 (1962).Google Scholar
  5. — andC. Owman: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund. II/7, 1–23 (1965).Google Scholar
  6. Francotte, P.: Note sur l'oeil pariétal, l'épiphyse, la paraphyse et les plexus choroïdes du troisième ventricule. Bull. Acad. méd. Belgique,27, 84–109 (1894).Google Scholar
  7. Hanitsch, R.: On the pineal eye of the young and adult ofAnguis fragilis. Proc. Liverpool Biol. Soc.3, 87–95 (1988).Google Scholar
  8. Herrick, C. L.: Contribution to the comparative morphology of the central nervous system II. Topography and histology of the brain of certain reptiles. J. comp. Neurol., Philadelphia,3, 77–106, 119–140 (1893).Google Scholar
  9. Hoffman, C. K.: Weitere Untersuchungen zur Entwicklung der Reptilien. Morph. Jb., Leipzig,11, 176–219 (1886).Google Scholar
  10. Kappers, J. Ariëns: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Zschr. Zellforsch.52, 163–215 (1960).Google Scholar
  11. —: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr. Brain Research10, 87–151 (1965).Google Scholar
  12. —: The sensory innvervation of the pineal organ in the lizard,Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Zschr. Zellforsch.81, 581–618 (1967).Google Scholar
  13. Kolmer, W., andR. Loewy: Beiträge zur Physiologie der Zirbeldrüse. Pflügers Arch. Physiol., Bonn,196, 1–14 (1922).Google Scholar
  14. Leydig, F.: Zirbel und Jacobsonsche Organe einiger Reptillen. Arch. mikrosk. Anat.50, 385–418 (1897).Google Scholar
  15. Lillie, R.D.: Histopathologic technic and practical histochemistry. New York: Blakiston Co., 1954.Google Scholar
  16. Milcu, St.M., andM. Dancasiu: The ultrastructure of pineal gland in reptiles (Ophidians). Proc. Nat. Congr. Endocrinol., May 30 – June 2, p. 211., Bucharest 1967.Google Scholar
  17. Nagasaki, T.: On the fiber connection systems of the habenular nucleus in the ophidian brain. Hiroshima. J. Med. Sc., Portland,3, 113–135 (1954).Google Scholar
  18. Oksche, A.: Survey of the development and comparative morphology of the pineal organ. Progr. Brain Research10, 3–28 (1965).Google Scholar
  19. — andH. Kirschstein: Zur Frage der Sinneszellen im Pinealorgan der Reptilien. Die Naturwiss.53, 46 (1966).Google Scholar
  20. Owman, C.: Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Int. J. Neuropharmacol.2, 105–112 (1964).Google Scholar
  21. —: Localization of neuronal and parenchymal monoamines under normal and experimental conditions in the mammalian pineal gland. Progr. Brain Research10, 423–453 (1965).Google Scholar
  22. Pearse, A.G.E.: Histochemistry, theoretical and applied, 2nd ed. Boston: Little Brown & Co., 1960.Google Scholar
  23. Preisler, O.: Zur Kenntnis der Entwicklung des Parietalauges und des Feinbaues der Epiphyse der Reptilien. Zschr. Zellforsch.32, 209–216 (1942).Google Scholar
  24. Quay, W.B.: Retinal and pineal hydroxyindole-O-methyl transferase activity in vertebrates. Life Sci.4, 983–991 (1965).Google Scholar
  25. —,J.F. Jongkind, andJ. Ariëns Kappers: Localizations and experimental changes in monoamines of the reptilian pineal complex studied by fluorescence histochemistry. Anat. Rec., Philadelphia,157, 304–305 (1967).Google Scholar
  26. — andD.C. Wilhoft: Comparative and regional differences in serotonin content of reptilian brains. J. Neurochem.11, 805–811 (1964).Google Scholar
  27. Rabl-Rückhard, H.: Einiges über das Gehirn der Riesenschlange. Z. wiss. Zool.54, 964 (1894).Google Scholar
  28. Sorenson, A.D.: Comparative study of the epiphysis and roof of the diencephalon. J. Comp. Neurol., Philadelphia,4, 153 (1894).Google Scholar
  29. Ssobolew, L.W.: Zur Lehre über die Entwidklung von Paraphysis und Epiphysis bei den Schlangen. Arch. mikrosk. Anat.70, 318–329 (1907).Google Scholar
  30. Studnička, F.K.: Sur les organes pariétaux dePetromyzon planeri. Sietzsber. Kg. Ges. der Wissen., Prag 1893 (Cited byTilney andWarren, 1919.)Google Scholar
  31. —: Die Parietalorgane. In:Lehrbuch der vergleichenden mikroskopischen Anatomie, V.A. Oppel, ed. Jena: Springer, 1905.Google Scholar
  32. Tilney, F., andL.F. Warren: The morphology and evolutionary significance of the pineal body. Amer. Anat. Mem.9, 1–257 (1919).Google Scholar
  33. Trost, E.: Untersuchungen über die frühe Entwicklung des Parietalauges und der Epiphyse vonAnguis fragilis, Chalcides ocellatus undTropidonotus natrix. Zool. Anz.148, 58–71 (1952).Google Scholar
  34. —: Die Entwicklung, Histogenese und Histologie der Epiphyse, der Paraphyse, des Velum Transversum, des Dorsalsackes und des Subcommissuralen Organs beiAnguis fragilis, Chalcides oceallatus undNatrix natrix. Acta anat., Basel,18, 326–342 (1953).Google Scholar
  35. Vivien, J.H.: Ultrastructure des constituants de l'épiphyse deTropidonotus natrix L. C. R. Acad. Sci., Paris258, 3370–3372 (1964).Google Scholar
  36. —: Signes de stimulation des activités sécrétoires des pinéalocytes chez la couleuvreTropidonotus natrix L. traitée par des principes gonadotropes. C. R. Acad. Sci., Paris,260, 5370–5372 (1965).Google Scholar
  37. Warren, J.: The development of the paraphysis and pineal region in reptilia. Amer. J. Anat.11, 313–392 (1911).Google Scholar
  38. Wilhoft, D.C., andW.B. Quay: Effects of temperature on brain contents of 5-hydroxytryptamine and related indoles in a lizard,Sceloporus occidentalis. Comp. Biochem. Physiol.15, 325–338 (1965).Google Scholar
  39. Ziesmer, C.: Eine Verbesserung der Silberimprägnierung nach Bodian. Zschr. wiss. Mikrosk., Stuttgart,60, 57–59 (1951).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • W. B. Quay
    • 1
  • J. Ariëns Kappers
    • 1
  • J. F. Jongkind
    • 1
  1. 1.Central Institute for Brain ResearchAmsterdamThe Netherlands

Personalised recommendations