Skip to main content
Log in

Optimal absolute error starting values for Newton-Raphson calculation of square root

Optimale Anfangswerte bezüglich des absoluten Fehlers für die Newton-Raphson Berechnung von Quadratwurzeln

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The problem of obtaining optimal starting values for the calculation of square root using Newton-Raphson's Method is considered. This paper presents the best starting values theory in order to optimize the maximum absolute error after a given number of iterations. Two different methods are shown, and a third, which can be considered as a mixture of the previous two, is briefly discussed. The approach combines analytical and numerical methodologies, which gives more interesting results on the main characteristics of the behavior of the absolute error for different initializations. A comparison table between the traditional optimal relative error results and the absolute error ones is provided.

Zusammenfassung

Wir betrachten das Problem, optimale Startwerte für die Berechnung von Quadratwurzeln bei Verwendung der Newton-Raphson Methode zu erhalten.

In dieser Arbeit wird die Theorie zur Wahl der besten Startwerte in Hinblick auf die Optimirung des maximalen absoluten Fehlers nach einer vorgegebenen Anzahl von Iterationen dargestellt. Es werden zwei verschiedene Methoden gezeigt und eine dritte, die als Mischung dieser beiden Methoden angesehen werden kann, betrachtet. Eine Vergleichstabelle zwischen den herkömmlichen Ergebnissen bezüglich des optimalen relativen Fehlers und des absoluten Fehlers wird angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Kaufman, G. D. Taylor: Uniform rational approximation of functions of several variables, In'l J. for Numerical Methods in Eng., Vol. 9, pp. 297–323 (1975).

    Article  Google Scholar 

  2. IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard 754, IEEE Computer Society (1985).

  3. P. Montuschi, M. Mezzalama: Survey of square rooting algorithms, IEEE Proceedings Part E,137, 31–40 (1990).

    Google Scholar 

  4. S. Majerski: Square-rooting algorithms for high-speed digital circuits, IEEE Trans. Comput.,C 34, 724–733 (1985).

    Google Scholar 

  5. P. Montuschi, L. Ciminiera: On the efficient implementation of higher radix square root algorithms, IEEE 9th Symposium on Computer Arithmetic, Santa Monica, CA (1989), pp. 154–161.

  6. V. G. Oklobdzija, M. D. Ercegovac: An on-line square root algorithm, IEEE Trans. Comput.,C 31, 70–75 (1982).

    Google Scholar 

  7. H. Peng: Algorithms for extracting square roots and cube roots, Proc. 5th IEEE Symposium on Computer Arithmetic, Ann Arbor, Michigan, pp. 121–126 (1981).

  8. G. S. Taylor: Compatible hardware for division and square root, Proc. 5th IEEE Symposium on Computer Arithmetic, Ann Arbor, Michigan, pp. 127–134 (1981).

  9. R. W. Southworth, S. L. Deleeuw: Digital computation and numerical methods, McGraw-Hill, New York (1965).

    Google Scholar 

  10. J. E. Volder: The CORDIC Trigonometric Computing Technique, IRE Trans. Electron. Comput.,EC 8, 330–334 (1959).

    Google Scholar 

  11. B. G. DeLugish: A class of algorithms for automatic evaluation of certain elementary functions in a binary computer, PhD Dissertation, Dept. of Computer Science, University of Illinois, Urbana (1970).

    Google Scholar 

  12. T. C. Chen: The automatic computation of exponentials, logarithms, ratios and square roots, IBM Research Report RJ 1970, p. 32 (1972).

    Google Scholar 

  13. M. Andrews: Mathematical microprocessor software: a\(\sqrt x \) comparison, IEEE Micro,2, 63–75 (1982).

    Google Scholar 

  14. D. G. Morsund: Optimal starting values for newton-raphson calculation of\(\sqrt x \), Comm. of the ACM,10, 430–432 (1967).

    Article  Google Scholar 

  15. I. Ninomiya: Best rational starting approximations and improved newton iteration for the square root, Math. Computation,24 391–404 (1970).

    Google Scholar 

  16. D. L. Phillips: Generalized logarithmic error and newton's method for them-th root, Math. Computation,24, 383–389 (1970).

    Google Scholar 

  17. P. H. Sterbenz, C. T. Fike: Optimal starting approximations for newton's method, Math. Computation,23, 313–318 (1969).

    Google Scholar 

  18. M. W. Wilson: Optimal starting approximations for generating square root for slow or no divide, Comm. of the ACM,13, 559–560, (1970).

    Article  Google Scholar 

  19. C. T. Fike: Starting approximations for square root calculation on IBM System 360, Comm. of the ACM,9, 297–299 (1966).

    Article  Google Scholar 

  20. J. E. Dennis, Jr., R. B. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1981).

    Google Scholar 

  21. W. Fraser, J. F. Hart: On the computation of the rational approximation to continuous functions, Comm. of the ACM,5, 401–404 (1962).

    Article  Google Scholar 

  22. P. Montuschi: Architetture di Elaborazioner per Applicazioni Speciali, PhD Dissertation (1989), I.R. DAI/ARC 1-89, Politecnico di Torino.

  23. Digital Equipment Co., VAX/VMS V.3.0 Mathematical Library (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montuschi, P., Mezzalama, M. Optimal absolute error starting values for Newton-Raphson calculation of square root. Computing 46, 67–86 (1991). https://doi.org/10.1007/BF02239012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02239012

AMS Subject Classifications

Key words

Navigation