, Volume 46, Issue 1, pp 35–51 | Cite as

Hermite interpolation: The barycentric approach

  • C. Schneider
  • W. Werner


The barycentric formulas for polynomial and rational Hermite interpolation are derived; an efficient algorithm for the computation of these interpolants is developed. Some new interpolation principles based on rational interpolation are discussed.

AMS Subject Classifications

65D05 41A20 

Key words

Numerical analysis approximation theory interpolation 

Hermite Interpolation: Der baryzentrische Zugang


Es werden baryzentrische Formeln für die Hermitesche polynomiale und rationale Interpolationsaufgabe hergeleitet; darüberhinaus wird ein effizienter Algorithmus zur Berechnung dieser Interpolierenden hergeleitet. Einige neue Interpolationsprinzipien, die auf rationaler Interpolation beruhen, werden diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gallucci, M. A., Jones, W. B.: Rational approximations corresponding to Newton series (Newton-Padé approximants). J. Approx. Th.17, 366–392 (1976).CrossRefGoogle Scholar
  2. [2]
    Graves-Morris, P. R.: Symmetrical formulas for rational interpolants. J. Comp. Appl. Math.10, 107–111 (1984).CrossRefGoogle Scholar
  3. [3]
    Graves-Morris, P. R. (ed.): Padé approximants and their applications. London and New York: Academic Press 1973.Google Scholar
  4. [4]
    Graves-Morris, P. R. (ed.): Padé approximants. London and Bristol: The Institute of Physics 1973.Google Scholar
  5. [5]
    Gordon, W. J., Wixom, J. A.: Shepard's method of “metric interpolation” to bivariate and multivariate interpolation. Math. Comp.32, 253–264 (1978).Google Scholar
  6. [6]
    Henrici, P.: Essentials of numerical analysis. New York: J. Wiley 1982.Google Scholar
  7. [7]
    Meinguet, J.: On the solubility of the Cauchy interpolation problem. In: Talbot, A. (ed.) Approximation theory, 137–163. London: Academic Press 1970.Google Scholar
  8. [8]
    Saff, E. B., Varga, R. S.: Padé and rational approximation. New York: Academic Press 1977.Google Scholar
  9. [9]
    Salzer, H. E.: Note on osculatory rational interpolation. Math. Comp.16, 486–491 (1962).Google Scholar
  10. [10]
    Schneider, C., Werner, W.: Some new aspects of rational interpolation. Math. Comp.47, 285–299 (1986).Google Scholar
  11. [11]
    Werner, H., Bünger, H. J. (eds.): Padé approximation and its applications, Lecture Notes in Mathematics,1071. New York and Heidelberg: Springer 1984.Google Scholar
  12. [12]
    Werner, W.: Polynomial interpolation: Lagrange versus Newton. Math. Comp.43, 205–217 (1984).Google Scholar
  13. [13]
    Wuytack, L.: Eigenschaften eines Algorithmus zur rationalen Interpolation. ISNM26, 193–199. Basel: Birkhäuser Verlag 1975.Google Scholar
  14. [14]
    Wynn, P.: Über einen Interpolations-Algorithmus und gewisse andere Formeln, die in der Theorie der Interpolation durch rationale Funktionen bestehen. Numer. Math.2, 151–182 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. Schneider
    • 1
  • W. Werner
    • 2
  1. 1.Fachbereich Mathematik Johannes Gutenberg-UniversitätMainzFederal Republic of Germany
  2. 2.Außenstelle Künzelsau Fachhochschule HeilbronnKünzelsauFederal Republic of Germany

Personalised recommendations