Skip to main content
Log in

On parallel methods for boundary value ODEs

Parallele Methoden für Randwertprobleme gewöhnlicher Differentialgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Some of the traditional methods for boundary value ODEs, such as standard multiple shooting, finite difference and collocation methods, lend themselves well to parallelization in the independent variable: the first stage of the construction of a solution approximation is performed independently on each subinterval of a mesh. However, the underlying possibly fast bidirectional propagation of information by fundamental modes brings about stability difficulties when information from the different subintervals is combined to form a global solution. Additional difficulties occur when a very stiff problem is to be efficiently and stably solved on a parallel architecture.

In this paper difference and parallel shooting methods are examined. A parallel algorithm for the stable solution of the resulting algebraic system is proposed and evaluated. A parallel algorithm for stiff boundary value problems is proposed as well.

Zusammenfassung

Eine REihe traditioneller Lösungsverfahren für Randwertprobleme gewöhnlicher Differentialgleichungen weisen ein natürliches Potential für deren Parallelisierung auf. Insbesondere der erste Teil der Lösungsphase, die Berechnung approximativer Lösungen auf einer Partition des Definitionsintervalles kann parallel ausgeführt werden. In der zweiten Phase, wo die lokalen Teilstücke zu einer globalen Lösung zusammengesetzt werden, treten jedoch durch die Existenz stabiler und instabiler Lösungsmoden Stabilitätsprobleme auf. Zusätzliche Probleme zeigen sich speziell dann, wenn sehr steife Randwertprobleme sowohl effizient als auch stabil auf Computern mit Parallelarchitekturen gelöst werden sollen.

Die vorliegende Arbeit untersucht Differenzenmethoden und Verfahren vom parallel Shooting Typ. Ein paralleler Algorithmus für die Lösung der auftretenden linearen Gleichungssysteme wird vorgeschlagen und analysiert. Schließlich wird ein Verfahren für steife Randwertprobleme vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ascher, J. Christiansen, R. D. Russell: “Collocation software for boundary value ODEs”, Trans. Math. Software7 (1981), 209–222.

    Article  Google Scholar 

  2. U. Ascher, S. Jacobs: “On collocation implementation for singularly perturbed two-point problems”, SIAM J. Scient. Stat. Comput.10 (1989), 533–549.

    Article  Google Scholar 

  3. U. Ascher, R. M. M. Mattheij: “General framework, stability and error analysis for numerical stiff boundary value problems”, Numer. Math.54 (1988), 355–372.

    Article  Google Scholar 

  4. U. Ascher, R. M. M. Mattheij, R. D. Russell: “Numerical solution of boundary value problems for ordinary differential equations”, Prentice-Hall (1988).

  5. S. D. Conte: “The numerical solution of linear boundary value problems”, SIAM Review8 (1966). 309–321.

    Article  Google Scholar 

  6. L. Dieci, M. R. Osborne, R. D. Russell: “A Riccati transformation method for solving boundary value problems, I: theoretical aspects”, SIAM J. Numer. Anal.25, (1988), 1055–1074.

    Article  Google Scholar 

  7. T. N. Gambill, R. D. Skeel: “Logarithmic reduction of the wrapping effect with application to ordinary differential equations”, SIAM J. Numer. Anal.25, (1988), 153–162.

    Article  Google Scholar 

  8. C. W. Gear: “The potential for parallelism in ordinary differential equations”, Tech. Rep. 86-1246, Computer Science Dept. University of Illinois, Urbana (1988).

    Google Scholar 

  9. C. W. Gear: “Massive parallelism across the method in ODEs”, Tech. Rep. 88-1442, Computer Science Dept. University of Illinois, Urbana (1988).

    Google Scholar 

  10. S. K. Godunov: “Numerical solution of boundary value problems for systems of linear ordinary differential equations”, Usp. Mat. Nauk16 (1961), 171–174.

    Google Scholar 

  11. N. A. Haskell: “The dispersion of surface waves in multilayered media”, Bull. Seism. Soc. Am.43 (1953), 17–34.

    Google Scholar 

  12. D. Heller: “Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems”, SIAM J. Numer. Anal.13 (1976), 484–496.

    Article  Google Scholar 

  13. D. Heller: “Direct and iterative methods for block tridiagonal linear systems”, PhD Thesis, Dept. Computer Science, CMU 1977.

  14. F. de Hoog, R. M. M. Mattheij: “On dichotomy and well-conditioning in BVP”, SIAM J. Numer. Anal.24 (1987), 89–105.

    Article  Google Scholar 

  15. S. L. Johnsson: “Solving tridiagonal systems on ensemble architectures”, SIAM J. Scient. Stat. Comput.8 (1987), 354–392.

    Article  Google Scholar 

  16. R. N. Kapur, J. C. Browne: “Techniques for solving block tridiagonal systems on reconfigurable array computers”, SIAM J. Scient. Stat. Comput.5 (1984), 701–719.

    Article  Google Scholar 

  17. R. M. Karp, V. Ramachandran: “A survey of parallel algorithms for shared-memory machines”, Tech. Rep. UCB/CSD 88/408, UC Berkeley, 1988.

  18. H. B. Keller: “Numerical methods for two-point boundary value problems”, Blaisdell, 1968.

  19. H.-O. Kreiss, N. K. Nichols, D. L. Brown: “Numerical methods for stiff two-point boundary value problems”, SIAM J. Num. Anal.23 (1986), 325–368.

    Article  Google Scholar 

  20. M. Lentini: “Parallel solution of special large block tridiagonal systems: TPBVP”, Manuscript, 1989.

  21. M. Lentini: “The potential for parallel algorithms in ordinary differential equations: boundary value problems”, Tech. Rep. 5/58, Lab. Nacional de Computacao Cientifica-LNCC, Rio de Janeiro, 1988.

    Google Scholar 

  22. M. Lentini, M. R. Osborne, R. D. Russell: “The close relationships between methods for solving two-point boundary value problems”, SIAM J. Numer. Anal.21 (1984).

  23. R. M. M. Mattheij: “Decoupling and stability of algirithms for boundary value problems”, SIAM Review (1985), 1–44.

  24. J. Nievergelt: “Parallel methods for integrating ordinary differential equations”, Comm. ACM7 (1964), 731–733.

    Article  Google Scholar 

  25. J. M. Ortega, R. G. Voight: “Solution of partial differential equations on vector and parallel computers”, SIAM Rev.27 (1985), 149–240.

    Article  Google Scholar 

  26. M. R. Osborne: “On shooting methods for boundary value problems”, J. Math. Anal. Appl.27 (1969), 417–433.

    Article  Google Scholar 

  27. B. A. Schmitt: “An algebraic approximation to the matrix exponential in singularly perturbed boundary value problems”, SIAM J. Numer. Anal.27, (1990), 51–66.

    Article  Google Scholar 

  28. S. J. Wright: “Stable parallel algorithms for two-point boundary value problems”, Preprint MCS-P178-0990, Argonne Nat. Lab. 1990.

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honour of Hans J. Stetter on the occasion of his 60th birthday

This research was supported in part by NSERC Canada Grant OGP0004306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascher, U.M., Chan, S.Y.P. On parallel methods for boundary value ODEs. Computing 46, 1–17 (1991). https://doi.org/10.1007/BF02239008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02239008

AMS Subject Classifications

Key words

Navigation