Advertisement

Computing

, Volume 49, Issue 1, pp 1–9 | Cite as

Best case lower bounds for Heapsort

  • Y. Ding
  • M. A. Weiss
Article

Abstract

The performance of Heapsort algorithms on arbitrary input is examined. It is proved that ann lognO(n) lower bound on the number of comparisons holds for a set of Heapsort algorithms, including Williams-Floyd's algorithm, Carlsson's bottom-up linear or binary insertion algorithm, and all up-down algorithms, on any input.

AMS Subject Classifications

68Q05 68Q25 

Key words

Analysis of algorithms sorting comparisons lower bound heapsort 

Untere Schranken von Heapsort für den besten Fall

Zusammenfassung

Dieser Artikel untersucht die Komplexität von Heapsort Algorithmen für willkürliche Eingaben. Es wird bewiesen, daß für die Anzahl der Vergleiche auf jeden Fall eine untere Schranke vom Typ nlogn-O(n) gilt, und zwar in einr Klasse von Heapsort Algorithmen, die den Williams-Floyd-Algorithmus, den Carlsson-Algorithmus mit linearem oder binärem Einfügen und alle up-down Algorithmen enthält.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ca87a] Carlsson, S.: Average-case results on heapsort. BIT27, 2 (1987).Google Scholar
  2. [Ca87b] Carlsson, S.: A variant of heapsort with almost optimal number of comparisons. Information Processing Letters24, 4 (1987).Google Scholar
  3. [Ca91] Carlsson, S.: An optimal algorithm for deleting the root of a heap. Information Processing Letters37, 2 (1991).Google Scholar
  4. [Do84] Doberkat, E.: An average case analysis of Floyd's algorithm to construct heaps. Information and Control61, 2 (1984).Google Scholar
  5. [DW91] Ding, Y., Weiss, M.: On heapsort algorithms that are good in both worst-case and averagecase, Tech. Report, School of Computer Science, Florida International University, Feb. 1991.Google Scholar
  6. [Fl64] Floyd, R.: Algorithm 245: Treesort. Comm. ACM7, 12 (1964).Google Scholar
  7. [Fr88] Frieze, A.: On the random construction of heaps. Information Processing Letters27, 2 (1988).Google Scholar
  8. [FSU91] Fleischer, R., Sinha, B., Uhrig, C.: A lower bound for the worst case of bottom-up-heapsort, personal communication, Jan. 1991.Google Scholar
  9. [GM86] Gonnet, G., Munro, J.: Heaps on heaps. SIAM J. Comput.15 4 (1986).Google Scholar
  10. [Ha91] Hayward, R.: Average case analysis of heap building by repeated insertion. J. Algorithms12, 1 (1991).Google Scholar
  11. [Kn73] Knuth, D.: The art of computer programming, Vol. 3. Reading, MA: Addison-Wesley 1973.Google Scholar
  12. [MR89] McDiarmid, C., Reed, B.: Building heaps fast. J. Algorithms10, 3 (1989).Google Scholar
  13. [PS75] Porter, T., Simon, I.: Random insertion into a priority queue structure. IEEE Trans. Software EngineeringSE-1, 3 (1975).Google Scholar
  14. [We90] Wegener, I.: Bottom-up-heapsort, a new variant of heapsort beating on avergage quicksort (ifn is not very small). Berlin, Heidelberg, New York: Springer 1990 (MFCS'90, Lecture Notes in Computer Science 452).Google Scholar
  15. [Wi64] Williams, J.: Algorithm 232: Heapsort. Comm. ACM7, 6 (1964).Google Scholar
  16. [XY90] Xunrang, G., Yuzhang, Z.: A new heapsort algorithm and the analysis of its complexity. The Computer Journal33, 3 (1990).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Y. Ding
    • 1
  • M. A. Weiss
    • 2
  1. 1.Computer Science DepartmentUniversity of California, Los AngelesLos AngelesUSA
  2. 2.School of Computer ScienceFlorida International UniversityMiamiUSA

Personalised recommendations