Skip to main content
Log in

Monte Carlo radiosity

Monte Carlo Radiosity

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The fast radiosity-type methods for very complex diffuse environments, introduced herein, present a nearly linear-time solution. The outlined procedures rely on recursive algorithms with stochastic convergence for solving the radiosity equation system. Approximations of gathering and shooting at very low computational cost—rather than the exact matrix of a single reflection—are used. The efficiency of the methods will be increased by applying variance reduction techniques.

Zusammenfassung

Die vorgestellten neuen Radiosity Methoden für diffuse Szenen sind besonders geeignet, um die Lichtausbreitung in sehr komplexen Umgebungen in linearer Zeit zu berechnen. Die Verfahren beruhen auf rekursiven Algorithmen, die das Radiosity-Gleichungssystem mittels stochastischer Konvergenz löseu. Approximationen der ‘gathering-’ und ‘shooting-’ Verfahren werden statt einer exakten Berechnung jedes Reflexionsschrittes verwendet. Die Effizienz der Verfahren kann durch geeignete Varianzreduktionsmethoden verbessert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum, D., Rushmeier, H. E., Winget, J. M.: Improving radiosity solutions through the use of analytically determined form factors. Proceedings of SIGGRAPH' 89. Comput. Graphics23, 325–334 (1989).

    Google Scholar 

  2. Cohen, M. F., Shenchang, E. Ch., Wallace, J. R., Greenberg, D. P.: A Progressive refinement approach to fast radiosity image generation. Proceedings of SIGGRAPH' 88. Comput. Graphics22, 75–84 (1988).

    Google Scholar 

  3. Chalmers, A. Paddon, D.: Parallel processing of progressive refinement radiosity. Second Eurographics Workshop on Rendering, Barcelona, Spain, 13–15 May, 1991.

  4. Feda, M. Purgathofer, W.: Accelerating radiosity by overshooting. In: Third Eurographics Workshop on Rendering, Bristol, England, 17–20 May, 1992.

  5. Gortler, S. J., Cohen, M. F.: Solving the radiosity linear system. In: Communication with virtual worlds (Thalmann, N. M., Thalman, D., eds.), pp. 78–88. Berlin, Heidelberg, New York, Tokyo: Springer 1993.

    Google Scholar 

  6. Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. Proceedings of SIGGRAPH' 91. Comput. Graphics25, 197–206 (1991).

    Google Scholar 

  7. Kelemen, C.: Private Communication, 1992.

  8. Kalos, M. H., Whitlock, P. A.: Monte Carlo methods, Vol. 1: Basics. New York: Wiley 1986.

    Google Scholar 

  9. Niederreiter, H.: Quasi-Monte-Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc.84, 957–1041 (1978).

    Google Scholar 

  10. Neumann, L., Neumann, A.: Photosimulation: interreflection with arbitrary reflectance models and illumination. Comput. Graphics Forum8, 21–34 (1989).

    Google Scholar 

  11. Neumann, L., Neumann, A.: Radiosity and hybrid methods, 1989, Budapest (accepted by ACM TOG in 1991 and to be published in 1995).

  12. Rubinstein, R. Y.: Simulation and the Monte Carlo method. New York: Wiley 1981.

    Google Scholar 

  13. Rushmeier, H. E.: Extending the Radiosity method to transmitting and specularly reflecting surfaces. Masters Thesis, Cornell University Ithaca, 1986.

  14. Wallace, J. R., Elmquist, K. A., Haines, E. A.: A ray tracing algorithm for progressive radiosity. Proceedings of SIGGRAPH' 89. Comput. Graphics23, 315–324 (1989).

    Google Scholar 

  15. Wyszecky, G., Stiles, W. S.: Color science concepts and methods, quantitative data formulae, 2nd ed. New York: Wiley 1982.

    Google Scholar 

  16. Young, D. M.: Iterative solution of large linear systems. New York: Academic Press 1971.

    Google Scholar 

  17. Neumann, L., Feda, M., Kopp, M., Purgathofer, W.: A new stochastic radiosity method for highly complex scenes. Proc. of the 5th Eurographics Workshop on Rendering, Darmstadt, Germany, 13–15 June, 1994.

  18. Neumann, L., Neumann, A., Purgathofer, W., Tobler, R. F., Elias, P., Feda, M., Pueyo, A.: The stochastic ray method for radiosity, Technical Report, TR-186-2-94-17, Technical University of Vienna, Austria, November 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, L. Monte Carlo radiosity. Computing 55, 23–42 (1995). https://doi.org/10.1007/BF02238235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238235

Key words

Navigation