Advertisement

Computing

, Volume 55, Issue 2, pp 163–180 | Cite as

On the stability of numerical methods of Hopf points using backward error analysis

  • G. W. Reddien
Article

Abstract

Backward error analysis is used to analyze the behavior of selected one-step and multi-step methods for ordinary differential equations at weakly attracting fixed points and weakly attracting periodic solutions. For many methods, a Hopf bifurcation for maps occurs. The effect of an adaptive mesh selection procedure on these results is presented for a special case.

AMS Subject Classification

65L05 

Key words

Hopf bifurcation Runge-Kutta Poincare map 

Stabilitätsuntersuchung numerischer Methoden an Hopf-Verzweigungspunkten mittels Rückwärtsanalyse des Fehlers

Zusammenfassung

Um das Verhalten bestimmter Ein- und Mehrschrittverfahren für gewöhnliche Differentialgleichungen an schwach anziehenden Fixpunkten bzw. schwach anziehenden periodischen Lösungen zu untersuchen, wird Rückwärts-Fehleranalyse eingesetzt. Bei vielen Methoden tritt eine Hopf-Verzweigung auf; der Effekt einer adaptiven Gitteranpassung für solche Situationen wird an einem Spezialfall demonstriert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beyn, W.-J.: Numerical methods for dynamical systems. In: Advances in numerical analysis, vol. 1 (Light, W. ed.), pp. 175–236. Oxford: Clarendon Press 1991.Google Scholar
  2. [2]
    Beyn, W.-J., Lorenz J.: Center manifolds of dynamical systems under discretization. Numer. Funct. Anal. Optim.9, 387–414 (1987).Google Scholar
  3. [3]
    Brezzi, F., Fujii, H., Ushiki, S.: Real and ghost bifurcation dynamics in difference schemes for ODEs. In: Numerical methods for bifurcation problems (Küpper, T. Mittlemann, H., Weber, H., eds.), pp. 79–104. ISNM 70, Birkhäuser (1984).Google Scholar
  4. [4]
    Calvo, M. P., Murna, A., Sanz-Serna, J. M.: Modified equations for ODEs. Cont. Math. AMS172, 63–74 (1994).Google Scholar
  5. [5]
    Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969.Google Scholar
  6. [6]
    Hale, J. K.: Asymptotic behavior of dissipative systems. Providence: American Mathematical Society 1988.Google Scholar
  7. [7]
    Hale, J. K., Lin, X.-B., Raugel, G.: Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math. Comput.50, 89–123 (1988).Google Scholar
  8. [8]
    Hale, J. K., Locak, H.: Differential equations: an introduction to dynamics and bifurcations. New York: Springer 1991.Google Scholar
  9. [9]
    Hairer, E.: Backward error analysis of numerical integrators and sympletic methods. Ann. Numer. Math.1, 107–132, (1994).Google Scholar
  10. [10]
    Hairer, E., Norsett, S. P., Wanner, O.: Solving ordinary differential equations I, nonstiff problems, 2nd ed., Berlin Heidelberg New York Tokyo: Springer 1993.Google Scholar
  11. [11]
    Hofbauer, J., Iooss, G.: Hopf bifurcation theorem for difference equations approximating a differential equation. Mh. Math.98, 99–113 (1984).CrossRefGoogle Scholar
  12. [12]
    Humphries, A. R., Stuart, A. M.: Runge-Kutta methods for dissipative and gradient dynamical systems, to appear.Google Scholar
  13. [13]
    Iooss, G.: Bifurcation of maps and applications. New York: North-Holland 1979.Google Scholar
  14. [14]
    Kloeden, P. E., Lorenz, J.: Stable attracting sets in dynamical systems and their one-step discretizations. SIAM J. Numer. Anal.23, 986–995 (1986).CrossRefGoogle Scholar
  15. [15]
    Koleden, P. E., Lorenz, J.: A note on multistep method and attracting sets of dynamical systems. Numer. Math.56, 667–673 (1990).CrossRefGoogle Scholar
  16. [16]
    Sanz-Serna, J. M.: Symplectic integrators for Hamiltonian problems: an overview. In: Acta Numer. 1992. Cambridge: Cambridge University Press 1992.Google Scholar
  17. [17]
    Sanz-Serna, J. M.: Numerical ordinary differential equations vs. dynamical systems. In: The dynamics of numerics and the numerics of dynamics (Broomhead, D. S., Sierles, A., eds.), pp. 81–106. Oxford: Clarendon Press 1992.Google Scholar
  18. [18]
    Stoffer, D.: General linear methods: connection to one step methods and invariant curves. Numer. Math.64, 395–407 (1993).CrossRefGoogle Scholar
  19. [19]
    Stuart, A. M., Humphries, A. R.: An analysis of local error control for disipative contrative and gradient dynamical systems, to appear.Google Scholar
  20. [20]
    Stuart, A. M., Humphries, A. R.: Model problems in numerical stability for initial value problems, to appear.Google Scholar
  21. [21]
    Stuart, A. M., The global attractor under discretization. In: Continuation and bifurcations: numerical techniques and applications (Roose, D., DeDier, B., Spence, A., eds), pp. 211–226. Dordrecht: Kluwer 1990.Google Scholar
  22. [22]
    Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Berlin Heidelberg New York Tokyo: Springer 1990.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. W. Reddien
    • 1
  1. 1.Mathematics DepartmentSouthern Methodist UniversityDallasUSA

Personalised recommendations