Skip to main content
Log in

Invariant imbedding and the calculation of eigenvalues for Sturm-Liouville systems

Invariante Einbettung und die Berechnung von Eigenwerten für Sturm-Liouville-Systeme

  • Published:
Computing Aims and scope Submit manuscript

Summary

A new technique based upon an invariant imbedding-Ricatti transformation approach is presented for the calculation of eigenvalues ofSturm-Liouville type systems of differential equations.

A very simple numerical procedure is developed which is easily programmed and which uses reliable subroutines. The method is capable of handling a large class of problems. Included among these are problems in which the eigenvalues appears in a non-linear fashion, cases in which the eigenvalue occurs in the boundary condition, and equations which have singularities.

The numerical computations are generally well-conditioned and very accurate results were obtained.

Zusammenfassung

Es wird eine neue Technik, basierend auf einer Methode, welche invariante Einbettung (Invariant Imbedding) mit derRicatti-Transformation kombiniert, dargestellt zum Zwecke der Berechnung der Eigenwerte von Differentialgleichungssystemen, welche vomSturm-Liouville-Typ sind.

Eine sehr einfache numerische Prozedur ist entwickelt worden, die leicht zu programmieren ist und verläßliche Unterprogramme benutzt. Dieses Verfahren vermag eine umfangreiche Klasse von Problemen zu handhaben. Unter ihnen sind solche inbegriffen, bei denen der Eigenwert in einer nichtlinearen Form auftritt; auch Fälle, wo der Eigenwert in der Randbedingung vorkommt; und schließlich auch Gleichungen, die Singularitäten aufweisen.

Es sei betont, daß die hier von uns behandelten numerischen Berechnungen im allgemeinen stabil sind und sehr genaue Ergebnisse hervorzubringen vermögen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I., M. Prager, andE. Vitasek: Numerical Processes in Differential Equations. New York: Interscience Publishers. 1966.

    MATH  Google Scholar 

  2. Bailey, P. B.:Sturm-Liouville Eigenvalues Via a Phase Function. J. SIAM Appl. Math.14, 2, 242–249 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazley, N. W., andD. W. Fox: Lower Bounds for Eigenvalues ofSchrödingers Equation. Physical Review124, 2, 483–492 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R. E., andR. E. Kalaba: On the Fundamental Equations of Invariant Imbedding, I. Proc. Nat. Acad. Sci. U.S.A.47, 336–338 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  5. Collatz, L.: Monotonicity and Related Methods in Non-Linear Differential Equations. Numerical Solutions of Nonlinear Differential Equations (edited byD. Greenspan). New York: John Wiley and Sons. 1966.

    Google Scholar 

  6. Dranoff, J. S.: An Eigenvalue Problem Arising in Mass and Heat Transfer Studies. Math. of Comp.15, 403–409 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  7. Durfee, W. H.: Heat Flow in a Fluid With Eddying Flow. J. Aero. Sci.23, 188–189 (1956).

    MATH  Google Scholar 

  8. Fettis, H. E.: On the Eigenvalues ofLatzkos Differential Equation. Z. Angew. Math. Mech.37, 398–399 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelfand, I. M., andS. V. Fomin: Calculus of Variations. Englewood Cliffs, New Jersey: Prentice-Hall. 1963.

    MATH  Google Scholar 

  10. Godart, M.: An Iterative Method for the Solution of Eigenvalue Problems. Math. of Comp.20, 95, 399–406 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  11. Godunov, S. K., andV. S. Ryabenki: Theory of Difference Schemes. New York: John Wiley and Sons. 1964.

    MATH  Google Scholar 

  12. Ince, E. L.: Ordinary Differential Equations. New York: Dover Publ. 1944.

    MATH  Google Scholar 

  13. Latzko, H.: Wärmeübergang an einem turbulenten Flüssigkeits- oder Gasstrom. Z. Angew. Math. Mech.1, 268–290 (1921).

    Article  MATH  Google Scholar 

  14. Richtmyer, R. D., andK. W. Morton: Difference Methods for Initial-Value Problems. 2nd Edition, New York: Interscience. 1967.

    MATH  Google Scholar 

  15. Ridley, E. C.: A Numerical Method of Solving Second-Order Linear Differential Equations with Two-Point Boundary Conditions. Proc. Camb. Phil. Soc.53, 442–447 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  16. Rybicki, G. B., andP. D. Usher: The GeneralizedRicatti Transformation As a Simple Alternative to Invariant Imbedding. Astrophysical Journal146, 3, 871–879 (1966).

    Article  MATH  Google Scholar 

  17. Shampine, L. F.: Boundary Value Problems for Ordinary Differential Equations. SIAM J. Numerical Analysis5, 219–242 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  18. Wax, Nelson: On a Phase Method for TreatingSturm-Liouville Equations and Problems. J. Soc. Indust. Appl. Math.9, 2, 215–232 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  19. Wing, G. M.: Introduction to Transport Theory. New York: John Wiley and Sons. 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Work was supported by the United States Atomic Energy Commission and supported in part under NSF Grant GP 5967.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, M.R., Shampine, L.F. & Wing, G.M. Invariant imbedding and the calculation of eigenvalues for Sturm-Liouville systems. Computing 4, 10–23 (1969). https://doi.org/10.1007/BF02236538

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02236538

Keywords

Navigation