Journal of Oceanography

, Volume 52, Issue 3, pp 275–299 | Cite as

The North Atlantic nutrient stream

  • J. L. Pelegrí
  • G. T. Csanady
  • A. Martins


Western boundary currents are the locus of intense nutrient transport, or nutrient streams. The largest fraction of this transport takes place in the upper-thermocline layers, between the surface layers (where speed reaches a maximum) and the nutrient bearing strata of the subtropical gyres (where nutrient concentration is maximum). The core of the nutrient stream of the North Atlantic subtropical gyre is located slightly offshore the Gulf Stream, its density coordinate centered on the 26.5−27.3σθ−band, approximately constant along the axis of the stream. During late spring and summer the nutrient stream reaches the surface seasonal mixed layer at the outcropping of this isopycnal band. We argue that this must be a principal factor sustaining the seasonal high productivity of the subpolar North Atlantic Ocean. Additionally, we investigate the possibility of intermittent shear-induced diapycnal mixing in the upper-thermocline layers of the Gulf Stream, induced by frontogenesis taking place during some phase of the meanders. Here we illustrate that diapycnal mixing has a maximum at the location of the nutrient stream, being associated to observed nutrient anomalies. We suggest that diapycnal mixing associated to the passage of steep meanders brings nutrients from the nutrient stream to the shallow photic layers, and sustains intermittent (day-to-week) patchy (10–100 km) productivity over the stream itself.


Mixed Layer Late Spring Western Boundary Principal Factor Gulf Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnone, R. A., R. W. Nero, J. M. Jech and I. de Palma (1990): Acoustic imaging of biological and physical processes within Gulf Stream meanders.Eos Trans. Am. Geophys. Union,71, 982.Google Scholar
  2. Ashjian, C. J. (1993): Trends in copepod species abundances across and along a Gulf Stream meander: evidence for entrainment and detrainment of fluid parcels from the Gulf Stream.Deep-Sea Res.,40, 461–482.Google Scholar
  3. Ashjian, C. J., S. L. Smith, C. N. Flagg, A. J. Mariano, W. J. Behrens and P. V. Z. Lane (1994): The influence of a Gulf Stream meander on the distribution of zooplankton biomass in the Slope Water, the Gulf Stream and the Sargasso Sea, described using a shipboard acoustic Doppler current profiler.Deep-Sea Res.,41, 23–50.Google Scholar
  4. Atkinson, L. P., T. N. Lee, J. O. Blanton and G. Paffenhöfer (1987): Summer upwelling on the southeastern continental shelf of the U.S.A. during 1981. Hydrographic observations.Prog. Oceanogr.,19, 231–266.Google Scholar
  5. Bolin, B., A. Bjorkstrom, K. Holmén and B. Moore (1983): The simultaneous use of tracers for ocean circulation studies.Tellus,35, 206–236.Google Scholar
  6. Bower, A. S. (1989): Potential vorticity balances and horizontal divergence along particle trajectories in Gulf Stream meanders east of Cape Hatteras.J. Phys. Oceanogr.,19, 1669–1681.Google Scholar
  7. Bower, A. S. and T. Rossby (1989): Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data.J. Phys. Oceanogr.,19, 1177–1190.Google Scholar
  8. Brewer, P. G. and D. Dyrssen (1987): Ocean chemical fluxes across 25°N in the Atlantic Ocean. Discussion paper at International GOFS Meeting, Paris, February 17–20, 25 pp.Google Scholar
  9. Brown, O. B., R. H. Evans, J. W. Brown, R. H. Gordon, R. C. Smith and K. S. Baker (1984): Blooming off the U.S. East Coast: A satellite description. p. 67–84. InGlobal Ocean Flux Study, National Academy Press, Washington.Google Scholar
  10. Brown, O., R. Evans, R. Watts, C. Casagrande, P. Hamilton, W. Boicourt and G. Csanady (1987):Study of Physical Processes on the U.S. Mid-Atlantic Continental Slope and Rise. Minerals Management Service Report No. 87-0024, 506 pp.Google Scholar
  11. Csanady, G. T. (1989): Energy dissipation and upwelling in a western boundary current.J. Phys. Oceanogr.,19, 462–473.Google Scholar
  12. Csanady, G. T. (1990): Physical basis of coastal productivity. The SEEP and MASAR experiments.Eos Trans. Am. Geophys. Union,71, 1060–1065.Google Scholar
  13. Csanady, G. T. and P. Hamilton (1988): Circulation of slopewater.Cont. Shelf Res.,8, 565–624.Google Scholar
  14. Darzi, M., J. Chen, J. K. Firestone and C. R. McClain (1989): SEAPAK: A satellite image analysis system for oceanographic research. Preprint Volume, 5th International Conference on Interactive and Information Processing Systems for Meteorology, Oceanography and Hydrology, American Meteorological Society, Boston, Massachusetts, pp. 26–32.Google Scholar
  15. Esaias, W. E., G. C. Feldman, C. R. McClain and J. A. Elrod (1986): Monthly satellite-derived phytoplankton pigment distribution for the North Atlantic basin.Eos Trans. Am. Geophys. Union,67, 835–837.Google Scholar
  16. Firestone, J. K., G. Fu, J. Chen, M. Darzi and C. R. McClain (1989): PC-SEAPAK: A state-of-the-art image display and analysis system for NASA's oceanographic research program. Preprint Volume, 5th International Conference on Interactive and Information Processing Systems for Meteorology, Oceanography and Hydrology, American Meteorological Society, Boston, Massachusetts, pp. 33–40.Google Scholar
  17. Flierl, G. R. and C. S. Davis (1993): Biological effects of Gulf Stream meandering.J. Mar. Res.,51, 529–560.Google Scholar
  18. Gargett, A. E. (1991): Physical processes and the maintenance of nutrient-rich euphotic zones.Limnol. Oceanogr.,36, 1527–1545.Google Scholar
  19. Garside, C. and J. C. Garside (1993): The “f-ratio” on 20°W during the North Atlantic Bloom Experiment.Deep-Sea Res.,40, 75–90.Google Scholar
  20. Hitchcock, G. L., A. J. Mariano and T. Rossby (1993): Mesoscale pigment fields in the Gulf Stream: Observations in a meander crest and trough.J. Geophys. Res.,98, 8425–8445.Google Scholar
  21. Ishizaka, J., H. Fukushima, M. Kishino, T. Kishino, T. Saino and M. Takahashi (1992): Phytoplankton pigment distributions in regional upwelling around the Izu Peninsula detected by Coastal Zone Color Scanner on May 1982.J. Oceanogr.,48, 305–327.Google Scholar
  22. Jenkins, W. J. (1980): Tritium and3He in the Sargasso Sea.J. Mar. Res.,38, 533–569.Google Scholar
  23. Jenkins, W. J. (1987):3H and3He in the Beta Triangle: observations of gyre ventilation and oxygen utilization rates.J. Phys. Oceanogr.,17, 763–783.Google Scholar
  24. Kawase, M. and J. L. Sarmiento (1985): Nutrients in the Atlantic thermocline.J. Geophys. Res.,90, 8961–8979.Google Scholar
  25. Kirwan, A. D. (1963):Circulation of Antarctic Intermediate Water Deduced through Isentropic Analysis. Reference 63-34F, Texas A & M University, College Station, Texas, 34 pp.Google Scholar
  26. Leetma, A. and A. F. Bunker (1978): Updated charts of the mean annual wind stress, convergences in the Ekman layers, and Sverdrup transports in the North Atlantic.J. Mar. Res.,36, 311–322.Google Scholar
  27. Levitus, S. (1982):Climatological Atlas of the World Ocean. NOAA Professional Paper 13, U.S. Government Printing Office, Washington, D.C.Google Scholar
  28. Lohrenz, S. E., J. J. Cullen, D. A. Phinney, D. B. Olson and C. S. Yentsch (1993): Distributions of pigments and primary production in a Gulf Stream meander.J. Geophys. Res.,98, 14545–14560.Google Scholar
  29. Luyten, J. and H. Stommel (1986): Gyres driven by combined wind and buoyancy flux.J. Phys. Oceanogr.,16, 1551–1560.Google Scholar
  30. Luyten, J., J. Pedlosky and H. Stommel (1983): The ventilated thermocline.J. Phys. Oceanogr.,13, 292–309.Google Scholar
  31. Marra, J. and C. Ho (1993): Initiation of the spring bloom in the northeast Atlantic (47°N, 20°W): a numerical simulation.Deep-Sea Res.,40, 55–73.Google Scholar
  32. Martin, J. H., G. A. Knauser, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the northwest Pacific.Deep-Sea Res.,34, 267–285.Google Scholar
  33. Martins, A. M., E. E. Hofmann and C. R. McClain (1995): CZCS-derived pigment data for the southeastern U.S. continental shelf from 1978 to 1986 (October to May). Part III: Atmospheric correction, pigment time series, and comparison with in situ data. Old Dominion University Research Foundation Report No. 95-06, 299 pp.Google Scholar
  34. Montgomery, R. B. (1937): A suggested method for representing gradient flow in isentropic surfaces.Bull. Am. Meteorol. Soc.,18, 210–212.Google Scholar
  35. Montgomery, R. B. (1938): Circulation in upper layers of Southern North Atlantic deduced with use of isentropic analysis.Papers Phys. Oceanogr. Meteorol.,6, 1–55.Google Scholar
  36. Munk, W. H. (1950): On the wind-driven ocean circulation.J. Meteorol.,7, 79–93.Google Scholar
  37. Newton, C. W. (1978): Fronts and wave disturbances in Gulf Stream and atmospheric jet stream.J. Geophys. Res.,83, 4697–4706.Google Scholar
  38. Nurser, A. J. G. and J. C. Marshall (1991): On the relationship between subduction rates and diabatic forcing of the mixed layer.J. Phys. Oceanogr.,21, 1793–1802.Google Scholar
  39. Pelegrí, J. L. and G. T. Csanady (1991): Nutrient transport and mixing in the Gulf Stream.J. Geophys. Res.,96, 2577–2583.Google Scholar
  40. Pelegrí, J. L. and G. T. Csanady (1994): Diapycnal mixing in western boundary currents.J. Geophys. Res.,99, 18275–18304.Google Scholar
  41. Redfield, A. C. (1936): An ecological aspect of the Gulf Stream.Nature,138, 1013.Google Scholar
  42. Reid, J. L. (1965):Intermediate Waters of the Pacific Ocean, Vol. 2. The Johns Hopkins Oceanographic Studies, John Hopkins University Press, Baltimore, 85 pp.Google Scholar
  43. Reid, J. L. (1981) On the mid-depth circulation of the world ocean. p. 70–111. InEvolution of Physical Oceanography, ed. by B. A. Warren, MIT Press, Cambridge.Google Scholar
  44. Reid, J. L. (1994): On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports.Prog. Oceanogr.,33, 1–92.Google Scholar
  45. Rhines, P. B. and W. Y. Young (1982): A theory of wind-driven circulation. I. Mid-ocean gyres.J. Mar. Res.,40, 559–596.Google Scholar
  46. Richards, A. F. and A. C. Redfield (1955): Oxygen-density relationships in the western North Atlantic.Deep-Sea Res.,2, 182–199.Google Scholar
  47. Richardson, P. L. (1983): Eddy kinetic energy in the North Atlantic from surface drifters.J. Geophys. Res.,88, 4355–4367.Google Scholar
  48. Riley, G. A. (1951): Oxygen, phosphate and nitrate in the Atlantic Ocean.Bull. Bingham Oceanogr. Collection,13, 1–125.Google Scholar
  49. Rintoul, S. R. and C. Wunsch (1991): Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean.Deep-Sea Res.,38, Suppl. 1, S619-S644.Google Scholar
  50. Roemmich, D. and C. Wunsch (1985): Two transatlantic sections: meridional circulation and heat flux in the subtropical North Atlantic Ocean.Deep-Sea Res.,32, 619–644.Google Scholar
  51. Rossby, C. G. (1936): Dynamics of steady ocean currents in the light of experimental fluid mechanics.Papers Phys. Oceanogr. Meteorol.,5, 1–43.Google Scholar
  52. Sarmiento, J. L. (1983): A tritium box model of the North Atlantic thermocline.J. Phys. Oceanogr.,13, 1269–1274.Google Scholar
  53. Sarmiento, J. L., C. G. Rooth and W. Roether (1982): The North Atlantic tritium distribution in 1972.J. Geophys. Res.,87, 8047–8056.Google Scholar
  54. Sarmiento, J. L., G. Thiele, R. M. Key and W. S. Moore (1990): Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre.J. Geophys. Res.,95, 18303–18315.Google Scholar
  55. Schlitzer, R. (1988): Modeling the nutrient and carbon cycles of the North Atlantic. 1. Circulation, mixing coefficients and heat fluxes.J. Geophys. Res.,93, 10699–10723.Google Scholar
  56. Schlitzer, R. (1989): Modeling the nutrient and carbon cycles of the North Atlantic. 2. New production, particle fluxes, CO2 gas exchange, and the role of organic nutrients.J. Geophys. Res.,94, 12781–12794.Google Scholar
  57. Smith, L. T., D. B. Boudra and R. Bleck (1990): A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 2. The Atlantic Basin experiments.J. Geophys. Res.,95, 13105–13128.Google Scholar
  58. Stefánsson, U. and L. P. Atkinson (1971): Nutrient-density relationships in the western North Atlantic between Cape Lookout and Bermuda.Limnol. Oceanogr.,16, 51–59.Google Scholar
  59. Stommel, H. (1979): Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below.Proc. Natl. Acad. Sci. USA,76, 3051–3055.Google Scholar
  60. Talley, L. D. and M. S. McCartney (1982): Distribution and circulation of Labrador Sea Water.J. Phys. Oceanogr.,12, 1189–1205.Google Scholar
  61. Thiele, G. and J. L. Sarmiento (1990): Tracer dating and ocean ventilation,J. Geophys. Res.,95, 9377–9391.Google Scholar
  62. Tsuchiya, M. (1968):Upper Waters of the Intertropical Pacific Ocean, Vol. 4. The Johns Hopkins Oceanographic Studies, Johns Hopkins University Press, Baltimore, 50 pp.Google Scholar
  63. Veronis, G. (1988): Circulation driven by winds and surface cooling.J. Phys. Oceanogr.,18, 1920–1932.Google Scholar
  64. Worthington, L. V. (1976):On the North Atlantic Circulation, Vol. 6. The Johns Hopkins Oceanographic Studies, Johns Hopkins University Press, Baltimore, 110 pp.Google Scholar
  65. Yentsch, C. S. (1974): The influence of geostrophy on primary production.Thetys,6, 111–118.Google Scholar
  66. Yoder, J. A., L. A. Atkinson, S. S. Bishop, E. E. Hofmann and T. N. Lee (1983): Effect of upwelling on phytoplankton productivity of the outer southeastern United States continental shelf.Cont. Shelf Res.,1, 385–404.Google Scholar

Copyright information

© Oceanographic Society of Japan 1996

Authors and Affiliations

  • J. L. Pelegrí
    • 1
  • G. T. Csanady
    • 2
  • A. Martins
    • 2
  1. 1.Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaCanary IslandsSpain
  2. 2.Center for Coastal Physical OceanographyOld Dominion University

Personalised recommendations