Skip to main content
Log in

Microcolonization mechanism of attached bacteria in a natural water-column

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A mathematical model of attached bacterial dynamics based on microcolonization was devised using data obtained from a bog. Bacterial samples obtained from any natural water body can be examined by this model with the method of non-linear least squares. The model comprises three bacterial processes; i.e., (1) the attachment rate which was dependent on time after submergence by adsorption onto the substratum surface, and both (2) growth and (3) detachment rate which were dependent on the number of bacterial cells in the microcolony. The population dynamics are expressed as

$$\frac{{dC_i }}{{dt}} = - g_i C_i + g_{i - 1} C_{i - 1} - b_i C_i + b_{i + 1} C_{i + 1} + a_i F_i ,$$

where suffixi denotes cell number in each microcolony,C i is microcolony number on the substratum,F i is bacterial clump drifting in the water column,a i , g i andb i are the rate coefficients of attachment, growth and detachment. The growth rate was reciprocally proportional to the cell number in the microcolony. The detachment was shown to increase up to a maximum, and then to decrease as the number of bacterial cells increased in each microcolony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida, W., T. Muraoka and H. Seki (1988): Effect of rapid oligotrophication by an aquatic treatment pilot plant on the microbial community of a mesotrophic bog V. attachment and growth kinetics of epibacteria.Water Air Soil. Pol.,42, 433–438.

    Google Scholar 

  • Björck, Å. (1967): Solving linear least-squares problems by Gram-Schmidt orthogonalization.BIT,7, 1–21.

    Article  Google Scholar 

  • Bott, T. L. and T. D. Brock (1970a): Growth and metabolism of periphytic bacteria: Methodology.Limnol. Oceanogr.,15, 333–342.

    Google Scholar 

  • Bott, T. L. and T. D. Brock (1970b): Growth rate ofSphaerotilus in a thermally polluted environment.Appl. Environ. Microbiol.,19, 100–102.

    Google Scholar 

  • Brannan, D. K. and D. E. Caldwell (1982): Evaluation of a proposed surface colonization equation usingThermothrix thiopara as a model organism.Microb. Ecol.,8, 15–21.

    Article  Google Scholar 

  • Busscher, H. J., M. M. Cowan and H. C. van der Mei (1992): On the relative importance of specific and non-specific approaches to oral microbial adhesion.FEMS Microbiol. Rev.,88, 199–210.

    Article  Google Scholar 

  • Caldwell, D. E. and J. R. Lawrence (1986): Growth kinetics ofPseudomonas fluorescens Microcolonies within hydrodynamic boundary layers of surface microenvironments.Microb. Ecol.,12 299–312.

    Article  Google Scholar 

  • Caldwell, D. E., D. K. Brannan, M. E. Moriis and M. R. Betlach (1981): Quantitation of microbial growth on surfaces.Microb. Ecol.,7, 1–11.

    Article  Google Scholar 

  • Caldwell, D. E., J. A. Malone and T. L. Kieft (1983): Derivation of a growth rate equation describing microbial surface colonization.Microb. Ecol.,9, 1–6.

    Article  Google Scholar 

  • Fletcher, M. (1977): The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene.Can. J. Microbiol.,23, 1–6.

    Google Scholar 

  • Kieft, T. L. and D. E. Caldwell (1983): A computer simulation of surface microcolony formation during microbial colonization.Microb. Ecol.,9, 7–13.

    Article  Google Scholar 

  • Marquardt, D. W. (1963): An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Indust. Appl. Math.,17, 431–441.

    Article  Google Scholar 

  • Marshall, K. C., R. Stout and R. Mitchell (1971): Selective sorption of bacteria from seawater.Can. J. Microbiol.,17, 1413–1416.

    PubMed  Google Scholar 

  • Millsap, K., G. Reid, H. C. van der Mei and H. J. Busscher (1994): Displacement ofEnterococcus faecalis from hydrophobic and hydrophilic substrata byLactobacillus andStreptococcus spp. as studied in a parallel plate flow chamber.Appl Environ. Microbiol.,60, 1867–1874.

    PubMed  Google Scholar 

  • Moré, J. J. (1978): The Levenberg-Marquardt algorithm: Implementation and theory. p. 105–116. InLecture Note in Mathematics 630 Numerical Analysis, ed. by G. A. Watson, Springer, Berlin.

    Google Scholar 

  • Mueller, R. F., W. G. Characklis, W. L. Jones and J. T. Sears (1992): Characterization of initical events in bacterial surface colonization by twoPseudomonas species using image analysis.Biotechnol. Bioeng.,39, 1161–1170.

    Article  Google Scholar 

  • Naganuma, T. and H. Seki (1985): Population growth rate of the bacterioplankton community in a bog, Matsumiike, Japan.Arch. Hydrobiol.,104, 387–406.

    Google Scholar 

  • Peyton, B. M. and W. G. Characklis (1993): A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment.Biotechnol. Bioeng.,41, 728–735.

    Article  Google Scholar 

  • Powell, M. J. D. (1970a): A hybrid method for nonlinear equations. p. 87–114. InNumerical Methods for Nonlinear Algebraic Equations, ed. by P. Rabinowits, Gordon and Breach, London.

    Google Scholar 

  • Powell, M. J. D. (1970b): A fortran subroutine for solving systems for nonlinear algebraic equations. p. 115–161. InNumerical Methods for Nonlinear Algebraic Equations, ed. by P. Rabinowits, Gordon and Breach, London.

    Google Scholar 

  • Reid, G., D. Lam, A. W. Bruce, H. C. van der Mei and H. J. Busscher (1994): Adhesion of lactobacilli to urinary catheters and diapers: Effect of surface properties.J. Biomed. Mater. Res.,28, 731–734.

    Article  PubMed  Google Scholar 

  • Utsumi, M., N. Ytow, H. Seki and K. Ishizuka (1994): Trophodynamic structure of a swampy bog at the climax stage of limnological succession II. Bacterioplankton dynamics.Water Air Soil. Pol.,76, 481–489.

    Article  Google Scholar 

  • van der Mei, H. C., J. de Vries and H. J. Busscher (1993): Hydrophobic and electrostatic cell surface properties of thermophillic dairy streptococci.Appl. Environ. Microbiol.,59, 4305–4312.

    Google Scholar 

  • Wolfaardt, G. M., J. R. Lawrence, R. D. Robarts, S. J. Caldwell and D. E. Caldwell (1994): Multicellular organization in a degradative biofilm community.Appl. Environ. Microbiol.,60, 434–446.

    Google Scholar 

  • ZoBell, C. E. and D. Q. Anderson (1936): Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surface.Biol. Bull.,71, 324–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ytow, N., Seki, H. Microcolonization mechanism of attached bacteria in a natural water-column. J Oceanogr 52, 207–219 (1996). https://doi.org/10.1007/BF02235670

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02235670

Keywords

Navigation