, Volume 3, Issue 4, pp 268–279 | Cite as

On the orthonormalization of sparse vectors

  • R. P. Tewarson


The problem of finding the optimum order in which the columns of a given sparse matrix should be orthonormalized, such that the resulting matrix is as sparse as possible, is discussed. It is shown how, under certain conditions, the optimum can be determined. Some computationally simple methods, which give a reasonably close approximation to the optimum column order, are given. The results of computational experiments performed on randomly generated matrices are also given. The analysis and the results of the paper hold for both theGram-Schmidt and theHouseholder methods of orthonormalization.


Computational Mathematic Computational Experiment Close Approximation Optimum Order Sparse Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Wir betrachten das folgende Problem: Wie soll die optimale Ordnung der Spalten einer gegebenen sparse Matrize orthonormalisiert werden, so daß die sich ergebende Matrize so sparse wie möglich ist. Es wird gezeigt wie unter gewissen Bedingungen das Optimum bestimmt werden kann. Verschiedene Methoden sind gegeben, welche vom Berechnungsstandpunkt aus einfach sind, und welche eine ziemlich genaue Annäherung an die optimale Spaltenordnung geben. Die Resultate der Berechnungsexperimente, die mit zufällig erzeugten Matrizen durchgeführt wurden, sind auch angegeben. Die Analyse und die Resultate dieser Arbeit gelten für dieGram-Schmidt und auch für dieHouseholdersche Orthonormalisierungsmethode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ALPS. Honeywell, E. D. P.: DSI-275, Wellesley Hills, Mass. 1964.Google Scholar
  2. [2]
    Davis, P. J.: Orthonormalizing Codes in Numerical Analysis. Survey of Numerical Analysis, p. 347–379.J. Todd, ed., McGraw-Hill, N. Y., 1962.Google Scholar
  3. [3]
    Elliot, D. L.: A Note on Systems of Linear Equations. SIAM Rev.,3, 1, 66–69 (1961).Google Scholar
  4. [4]
    Householder, A. S.: The Theory of Matrices in Numerical Analysis, p. 133–139. New York: Blaisdell Publishing Co. 1964.Google Scholar
  5. [5]
    LP 90 Reference Manual, SHARE Distr. Agency, 1377 White Plains, N. Y.Google Scholar
  6. [6]
    Marcus, M., andH. Minc: A Survey of Matrix Theory and Matrix Inequalities, p. 60. Boston: Allyn and Bacon. 1964.Google Scholar
  7. [7]
    Rice, J. H.: Experiments onGram-Schmidt Orthogonalization. Math. Comp.,20, 94, 325–328 (1966).Google Scholar
  8. [8]
    Semarne, H. M.: New Direct Method of Solution of a System of Simultaneous Linear Equations. SIAM Rev.,1, 53–54 (1959).Google Scholar
  9. [9]
    Tewarson, R. P.: On the Product Form of Inverses of Sparse Matrices. SIAM Rev.,8, 3, 336–342 (1966).Google Scholar
  10. [10]
    Tewarson, R. P.: On the Product Form of Inverses of Sparse Matrices and Graph. Theory. SIAM Rev.,9, 91–99 (1967).Google Scholar
  11. [11]
    Tewarson, R. P.: RSMC — Honeywell Linear Programming Package, Honeywell E.D.P., Wellesley Hills, Mass., 1963.Google Scholar
  12. [12]
    Wilkinson, J. H.: Rounding Errors in Algebraic Processes, p. 86–91, Prentice-Hall, Englewood Cliffs, N. J., 1963.Google Scholar
  13. [13]
    Wilkinson, J. H.: The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, p. 152–153, 223–236. 1965.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • R. P. Tewarson
    • 1
  1. 1.State University of New YorkStony BrookUSA

Personalised recommendations