Advertisement

Chemistry of Natural Compounds

, Volume 33, Issue 3, pp 213–220 | Cite as

Spatial structures of natural sesquiterpenes of the humulene type

  • B. Tashkhodzhaev
Article
  • 61 Downloads

Abstract

The spatial structures of the natural sesquiterpenes α-,β-, and γ-humulenes have been studied by the method of molecular mechanics (MM). The conformational states of the 11-membered macrocycle in the humulenes have been analyzed on the basis of calculated figures and x-ray structural results. It has been shown that four conformational states, differing by the mutual positions of the C14 and C15 methyl groups and the C7 and C8 atoms relative to the plane of the macrocycle are characteristic for all humulenes. These conformational states are denoted as14U87,14U87,14U78, and14U78. The conformational flexibility of the 11-membered ring in the humulenes has been evaluated.

Keywords

Methyl Organic Chemistry Molecular Mechanic Spatial Structure Macrocycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Saidkhodzhaev, Khim. Prir. Soedin., 437 (1979).Google Scholar
  2. 2.
    O. P. Vig, B. Ram, K. S. Atwal, and S. S. Barl, Indian J. Chem.,14B, 855 (1961).Google Scholar
  3. 3.
    P. De Mayo, The Higher Terpenoids, Interscience, New York (1959) [Russian translation, IL, Moscow (1963), p. 235].Google Scholar
  4. 4.
    V. Benešová, V. Herout, and E. Šorm, Coll. Czech. Chem. Commun.,26, 1832 (1961).Google Scholar
  5. 5.
    L. A. Smedman, E. Zavarin, and C. Teranichi, Phytochemistry,8, 1457 (1969).Google Scholar
  6. 6.
    M. Miski, T. J. Mabry, and O. Saya, Phytochemistry,26, No. 6, 1733 (1987).Google Scholar
  7. 7.
    J. K. Sutherland, Tetrahedron,30, 1651 (1974).Google Scholar
  8. 8.
    K. Takeda, Tetrahedron,30, 1525 (1974).Google Scholar
  9. 9.
    S. Dev, J. E. Anderson, V. Cormier, N. P. Damodran, and J. D. Roberts, J. Am. Chem. Soc.,90, 1246 (1968).Google Scholar
  10. 10.
    A. S. Gupta and S. Dev, Tetrahedron,27, 635 (1971).Google Scholar
  11. 11.
    U. Burkert and N. L. Allinger, Molecular Mechanisms, ACS Monograph 177 (1982) [Russian translation, Mir, Moscow (1986), p. 125].Google Scholar
  12. 12.
    N. H. Fischer, E. J. Oliver, and H. D. Fischer, Prog. Chem. Org. Nat. Prod.,38, 47 (1979)Google Scholar
  13. 13.
    H. Shirahama, E. Osawa, and T. Matsumoto, Tetrahedron Lett., 1987 (1987).Google Scholar
  14. 14.
    A. T. McPhail and G. A. Sim, J. Chem. Soc.,B, 112 (1966).Google Scholar
  15. 15.
    P. Murray-Rust and J. Murray-Rust, Acta Crystallogr.,B33, 3931 (1977).Google Scholar
  16. 16.
    M. A. Russell, G. A. Sim, and D. N. J. White, J. Chem. Soc., Perkin Trans. II, 245 (1982).Google Scholar
  17. 17.
    S. R. Hall, S. Nimgirawath, C. L. Rasdton, A. Sittatrakul, S. Thadaniti, N. Thirasasana, and A. H. White, Aust. J. Chem.,34, 2243 (1981).Google Scholar
  18. 18.
    Z. F. Khan, D. K. MacAlpine, A. L. Porte, and G. A. Sim, J. Chem. Soc., Perkin Trans. II, 1259 (1983).Google Scholar
  19. 19.
    D. K. MacAlpine, A. L. Porte, and G. A. Sim, J. Chem. Soc., Perkin Trans. I, 1385 (1982).Google Scholar
  20. 20.
    M. E. Cradwick, P. D. Cradwick, and G. A. Sim, J. Chem. Soc., Perkin Trans. II, 404 (1973).Google Scholar
  21. 21.
    I. H. Qureshi, S. A. Husain, N. Noorani, N. Murtaza, Y. Iitaka, S. Iwasaki, and S. Okuda, Tetrahedron Lett.,21, 1961 (1980).Google Scholar
  22. 22.
    A. Matsuo, K. I. Yoshida, K. Uohama, S. Hayashi, J. D. Connolly, and G. A. Sim, Chem. Lett., 935 (1985).Google Scholar
  23. 23.
    J. D. Connolly, G. A. Sim, and A. Matsuo, Acta Crystallogr.,43, 1422 (1987).Google Scholar
  24. 24.
    S. Huneck, G. A. Baxter, A. F. Cameron, J. D. Connolly, J. L. Harrison, W. R. Phillips, D. S. Rycroft, and G. A. Sim, J. Chem. Soc., Perkin Trans. I, 809 (1986).Google Scholar
  25. 25.
    A. Matsuo, K. I. Yoshida, Y. Fukazawa, M. Nakayama, and K. Kuriyama, Chem. Lett., 369 (1987).Google Scholar
  26. 26.
    M. Holub and Z. Samek, Coll. Czech. Chem. Commun.,42, 1053 (1977).Google Scholar
  27. 27.
    B. Tashkhodzhaev and A. I. Saidkhodzhaev, Khim. Prir. Soedin., 197 (1992).Google Scholar
  28. 28.
    M. K. Makhmudov, B. Taskhkodzhaev, G. V. Sagitdinova, A. E. Saidkhodzhaev, M. R. Yagudaev, and V. M. Malikov, Khim. Prir. Soedin., 42 (1986).Google Scholar
  29. 29.
    O. Yu. Rekhlova, B. Tashkhodzhaev, V. I. Andrianov, A. I. Saidkhodzhaev, G. V. Sagitdinova, and N. G. Furmanova, Khim. Prir. Soedin., 757 (1990).Google Scholar
  30. 30.
    O. Yu. Rekhlova, B. Tashkhodzhaev, V. I. Andrianov, G. V. Sagitdinova, and A. I. Saidkhodzhaev, Khim. Prir. Soedin., 494 (1991).Google Scholar
  31. 31.
    Y. Naya, K. Yoshihara, T. Iwashita, H. Komura, K. Nakanishi, and Y. Hata, J. Am. Chem. Soc.,103, 7009 (1981).Google Scholar
  32. 32.
    H. Itokawa, H. Matsumoto, S. Mihashi, and Y. Iitaka, Chem. Lett., 1581 (1983).Google Scholar
  33. 33.
    H. Itokawa, H. Matsumoto, S. Mihashi, Y. Iitaka, A. Kasuya, and A. Itai, Chem. Pharm. Bull.,33, 2204 (1985).Google Scholar
  34. 34.
    C. B. Rao, K. C. Pullaiah, R. K. Surapaneni, B. W. Sullivan, K. F. Albizati, D. J. Faulkner, He Cun-heng, and J. Clardy, J. Org. Chem.,51, 2736 (1986).Google Scholar
  35. 35.
    V. G. Dashevskii, The Conformation of Organic Molecules [in Russian], Khimiya, Moscow (1974), p. 35.Google Scholar
  36. 36.
    L. A. Golovina and G. K. Nikonov, Khim. Prir. Soedin., 707 (1977).Google Scholar
  37. 37.
    L. A. Golovina and A. I. Saidkhodzhaev, Khim. Prir. Soedin., 726 (1977).Google Scholar
  38. 38.
    G. V. Sagitdinova, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 809 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. Tashkhodzhaev

There are no affiliations available

Personalised recommendations