Skip to main content
Log in

Role of molecular diagnostic testing in familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer families

  • Current Status
  • Published:
Diseases of the Colon & Rectum

Abstract

PURPOSE: Genetic tests are available for familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer. The goal of this review was to develop an algorithm for application of molecular diagnostic techniques to the management of hereditary colorectal carcinoma and to familiarize the clinician with the vocabulary of molecular genetic testing for hereditary colorectal carcinoma. METHODS: Studies examining the clinical use of genetic testing for hereditary colorectal carcinoma syndromes are evaluated. Recent advances in molecular genetic technology are reviewed, and clinical management as practiced here and elsewhere is outlined. RESULTS: This review is a guide to the most reliable molecular diagnostic techniques. Three key questions are answered: who, when, and how to test. CONCLUSIONS: When integrated with existing testing protocols for colorectal carcinoma and when applied with appropriate caveats, particularly regarding interpretation of negative results, genetic testing can result in improved management of patients and families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong N, Lasko D, Rabelo R, Pinsky L, Gordon PH, Foulkes W. Genetic counseling and interpretation of genetic tests in familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer. Dis Colon Rectum (in press).

  2. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA Cancer J Clin 1998;48:6–29.

    Google Scholar 

  3. McLaughlin JR, Fields AL, Levy I,et al. National Cancer Institute of Canada: Canadian Cancer Statistics, 1999. Toronto: National Cancer Institute of Canada, 1999.

    Google Scholar 

  4. Foulkes WD. A tale of four syndromes: familial adenomatous polyposis, Gardner syndrome, attenuated APC and Turcot syndrome. Q J Med 1995;88:853–63.

    Google Scholar 

  5. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159–70.

    Google Scholar 

  6. White, RL. Tumor suppressing pathways. Cell 1998;92:591–2.

    Google Scholar 

  7. Groden J, Thliveris A, Samowitz W,et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.

    Google Scholar 

  8. Nishisho I, Nakamura Y, Miyoshi Y,et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–9.

    Google Scholar 

  9. Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R. Mouse models for colorectal cancer. Oncogene 1999;18:5325–33.

    Google Scholar 

  10. Laken SJ, Petersen GM, Gruber SB,et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract inAPC. Nat Genet 1997;17:79–83.

    Google Scholar 

  11. Woodage T, King SM, Wacholder S,et al. The APC I1307K allele and cancer risk in a community-based study of Ashkenazi Jews. Nat Genet 1998;20:62–5.

    Google Scholar 

  12. Redston M, Nathoson KL, Yuan ZQ,et al. The APC I1307K allele and breast cancer risk. Nat Genet 1998;20:13–4

    Google Scholar 

  13. Bulow S. Clinical features in familial polyposis coli: results of the Danish Polyposis Register. Dis Colon Rectum 1986;29:102–7.

    Google Scholar 

  14. Lynch HT, Smyrk T, Lynch JF. Overview of natural history, pathology, molecular genetics and management of HNPCC (Lynch Syndrome). Int J Cancer 1996;69:38–43.

    Google Scholar 

  15. Thorson AG, Knezetic JA, Lynch HT. A century of progress in hereditary nonpolyposis colorectal cancer (Lynch Syndrome). Dis Colon Rectum 1999;42:1–9.

    Google Scholar 

  16. Vasen HF, Watson P, Mecklin J-P, Lynch HT. New clinical criteria for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999;116:1453–6.

    Google Scholar 

  17. Wijnen J, Vasen H, Khan M,et al. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med 1998;339:511–8.

    Google Scholar 

  18. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Ann Rev Biochem 1996;65:101–33.

    Google Scholar 

  19. Fishel R, Lescoe MK, Rao MR,et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993;75:1027–38.

    Google Scholar 

  20. Leach FS, Nicolaides NC, Papadopoulos N,et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993;75:1215–25.

    Google Scholar 

  21. Peltomaki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 1997;113:1146–58.

    Google Scholar 

  22. Nicolaides NC, Papadopoulos N, Liu B,et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994;371:75–80.

    Google Scholar 

  23. Akiyama Y, Sato H, Yamada T,et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 1997;57:3920–3.

    Google Scholar 

  24. Miyaki M, Konishi M, Tanaka K,et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 1997;17:271–2.

    Google Scholar 

  25. Prolla TA, Baker SM, Harris AC,et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 1998;18:276–9.

    Google Scholar 

  26. Markowitz S, Wang J, Myeroff L,et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–8.

    Google Scholar 

  27. Foulds L. The natural history of cancer. J Chronic Dis 1958;8:1–37.

    Google Scholar 

  28. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23–8.

    Google Scholar 

  29. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51:3075–9.

    Google Scholar 

  30. Lu SL, Kawabata M, Imamura T,et al. HNPCC associated with germline mutation in the TGF-beta type II receptor gene. Nat Genet 1998;19:17–8.

    Google Scholar 

  31. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 1997;57:4749–56.

    Google Scholar 

  32. Aaltonen LA, Peltomaki P, Leach FS,et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993;260:812–6.

    Google Scholar 

  33. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993:260:816–9.

    Google Scholar 

  34. Nollau P, Wagener C. Methods for detection of point mutations: performance and quality assessment. IFCC Scientific Division, Committee on Molecular Biology Techniques. Clin Chem 1997;43:1114–28.

    Google Scholar 

  35. Gryfe R, Kim H, Hsieh ET,et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000;342:69–77.

    Google Scholar 

  36. Cawkwell L, Gray S, Murgatroyd H,et al. Choice of management strategy for colorectal cancer based on a diagnostic immunohistochemical test for defective mismatch repair. Gut 1999;45:409–15.

    Google Scholar 

  37. Marcus VA, Madlensky L, Gryfe R,et al. Immunohistochemistry for hMLH1 and hMSH2: A practical test for DNA mismatch-repair deficient tumors. Am J Surg Pathol 1999;23:1248–55.

    Google Scholar 

  38. Powell SM, Petersen GM, Krush AJ,et al. Molecular diagnosis of familial adenomatous polyposis. N Engl J Med 1993;329:1982–7.

    Google Scholar 

  39. Giardiello FM, Brensinger JD, Petersen GM,et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis. N Engl J Med 1997;336:823–7.

    Google Scholar 

  40. Wijnen J, van der Klift H, Vasen H,et al. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet 1998;20:326–8.

    Google Scholar 

  41. Mauillon JL, Michel P, Limacher JM,et al. Identification of novel germ line hMLH1 mutations including a 22 kb alu-mediated deletion in patients with familial colorectal cancer. Cancer Res 1996;56:5728–33.

    Google Scholar 

  42. Liu B, Parsons R, Papadopoulos N,et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 1996;2:169–74.

    Google Scholar 

  43. Shimodaira H, Filosi N, Shibata H,et al. Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nat Genet 1998;19:384–9.

    Google Scholar 

  44. Yuan ZQ, Wong N, Foulkes W,et al. A missense mutation in both hMSH2 and APC in an Ashkenazi Jewish HNPCC kindred: implications for clinical screening. J Med Genet 1999;36:790–3.

    Google Scholar 

  45. Eng C, Vijg J. Genetic testing: the problems and the promise. Nat Biotechnol 1997;15:422–6.

    Google Scholar 

  46. Wilgenbus KK, Lichter P. DNA chip technologyante portas. J Mol Med 1999;77:761–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rabelo, R., Foulkes, W., Gordon, P.H. et al. Role of molecular diagnostic testing in familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer families. Dis Colon Rectum 44, 437–446 (2001). https://doi.org/10.1007/BF02234746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02234746

Key words

Navigation