Journal of Oceanography

, Volume 48, Issue 1, pp 93–104 | Cite as

Pressure-induced alteration in fatty acid composition of barotolerant deep-sea bacterium

  • Kazuo Kamimura
  • Hiroyuki Fuse
  • Osamu Takimura
  • Yukiho Yamaoka
  • Kouichi Ohwada
  • Jun Hashimoto
Article

Abstract

Barotolerant bacterium was isolated from sediment sample which was obtained from the depth of 4033 m in the Izu-Ogasawara Trench. The physiological property, growth characteristics and fatty acid composition were examined. The strain was a psychrotrophic and barotolerant bacterium, and was identified as species in the genusAlteromonas. The fatty acids of the strain were from C12 to C18. As the growth pressure increased, the portion of unsaturated fatty acid in membrane fraction increased due to an increase in the portion of C17∶1 and C18∶1, while the relative portion of C16∶0 and C16∶1 decreased. On the other hand, as the growth temperature decreased, the portion of unsaturated fatty acid increased due to the increase in the portion of C16∶1 and C18∶1.

Keywords

Acid Composition Fatty Acid Composition Trench Sediment Sample Growth Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, D., M. Wright, A. A. Yayanos and M. Silverman (1989): Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium.Nature,342, 572–574.Google Scholar
  2. Cossins, A. R. (1983): The adaptation of membrane structure and function to changes in temperature. p. 3–32. InCellular Acclimatization to Environmental Change, Cambridge University Press, Cambridge.Google Scholar
  3. Delong, E. F. and A. A. Yayanos (1985): Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure.Science,228, 1101–1102.Google Scholar
  4. Delong, E. F. and A. A. Yayanos (1986): Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryote.Appl Environ. Microbiol.,51, 730–737.Google Scholar
  5. De mendoza, D. and J. E. Cronan, Jr. (1983): Thermal regulation of membrane lipid fluidity in bacteria.Trends Biomed. Sci. Feb., 49–52.Google Scholar
  6. Demming, J. W. and R. R. Colwell (1982): Barophilic bacteria associated with digestive tracts of abyssal holothurians.Appl. Environ. Microbiol.,44, 1222–1230.Google Scholar
  7. Fulco, A. J. (1983): Fatty acid metabolism in bacteria.Prog. Lipid Res.,22, 133–160.Google Scholar
  8. Helmke, H. and H. Weyland (1986): Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria.Mar. Biol. 91 1–7.Google Scholar
  9. Hendrie, M. S. and J. M. Shewan (1979) The identification of Pseudomonads. p. 1–14. InIdentification Methods for Microbiologists, ed. by F. A. Skinner and D. W. Lovelock, Academic Press, London.Google Scholar
  10. Jaenicke, R., G. Bernhardt, H. D. Ludemann and K. O. Stetter (1988): Pressure-induced alterations in the protein pattern of the thermophilic archaebacteriumMethanococcus thermolithotrophicus.Appl. Environ. Microbiol.,54, 2375–2380.Google Scholar
  11. Jannasch, H. W. and C. D. Taylor (1984): Deep sea microbiology.Annu. Rev. Microbiol.,38, 487–514.Google Scholar
  12. Jannasch, H. W. and C. O. Wirsen (1984): Variability of pressure adaptation in deep-sea bacteria.Arch. Microbiol.,139, 281–288.Google Scholar
  13. Morita, R. Y. (1967): Effects of hydrostatic pressure on marine microorganisms.Oceangr. Mar. Biol. Annu. Rev.,5, 187–203.Google Scholar
  14. Nishimura, Y., K. Kanbe and H. Iizuka (1986): Taxonomic studies of aerobic coccobacilli from seawater.J. Gen. Appl. Microbiol.,32, 1–11.Google Scholar
  15. Okuyama, H., N. Fukunaga and S. Sasaki (1986): Homeoviscous adaptation in a psychrophilic bacterium, PitVibrio sp. strain ABE-1.J. Gen. Appl. Microbiol.,32, 473–482.Google Scholar
  16. Oliver, J. D. and R. R. Colwell (1973): Extractable lipids of gram-negative marine bacteria: fatty-acid composition.Int. J. Syst. Bacteriol.,23, 442–458.Google Scholar
  17. Osborn, M. J. and R. Munson (1974): Separation of inner and outer membranes of gram-negative bacteria.Methods Enzymol.,31, 642–652.Google Scholar
  18. Quigley, M. M. and R. R. Colwell (1968): Properties of bacteria isolated from deep-sea sediments.J. Bacteriol 95, 211–220.Google Scholar
  19. Sinensky, M. (1974): Homeoviscous adaptation; A homeostatic process that regulates the viscosity of the membrane lipids inEscherichia coli.Proc. Natl Acad. Sci. USA.,71, 522–526.Google Scholar
  20. Wirsen, C. O., H. W. Jannasch, S. G. Wakeham and E. A. Canuel (1987): Membrane lipids of a psychrophilic and barophilic deep-sea bacterium.Current Microbiol.,14 319–322.Google Scholar
  21. Yayanos, A. A., A. S., Dietz and R. Van Boxtel (1982): Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria.Appl. Environ. Microbiol.,44, 1356–1361.Google Scholar
  22. Zambon, J. J., P. S. Huber, A. E. Meyer, J. Slots, M. S. Fornalik and R. E. Baier (1984): In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique.Appl. Environ. Microbiol.,48, 1214–1220.Google Scholar
  23. Zobell, C. E. (1970): Pressure effects on morphology and life processes of bacteria. p. 85–130. InHigh Pressure Effects on Cellular Processes, ed. by A. M. Zimmerman, Academic Press, New York.Google Scholar
  24. Zobell, C. E. and R. Y. Morita (1957): Barophilic bacteria in some deep sea sediments.J. Bacteriol.,73, 563–568.Google Scholar

Copyright information

© Oceanographic Society of Japan 1992

Authors and Affiliations

  • Kazuo Kamimura
    • 1
  • Hiroyuki Fuse
    • 1
  • Osamu Takimura
    • 1
  • Yukiho Yamaoka
    • 1
  • Kouichi Ohwada
    • 2
  • Jun Hashimoto
    • 3
  1. 1.Government Industrial Research InstituteHiroshimaJapan
  2. 2.Ocean Research InstituteUniversity of TokyoTokyoJapan
  3. 3.Japan Marine Science and Technology CenterKanagawaJapan

Personalised recommendations