Skip to main content
Log in

The electrical activity of the alimentary tract

  • Published:
The American Journal of Digestive Diseases Aims and scope Submit manuscript

Conclusions

It is possible to describe the characteristic electrical activities of single cells and groups of intestinal muscle cells in terms of slow waves and spikes, but these activities vary depending upon interactions with other cells (nerves, muscle layers, etc.). The mechanism underlying these cellular interactions is not yet understood, but it is possible to say that the activities of cells grouped in certain arrays cannot be deduced from the activities of component cells in isolation (e.g., longitudinal and circular muscle separate and together, circular muscle in very fine strips and in larger strips, resistance between 2 cells and across a single cell). It is possible to believe, although proof is lacking, that most interactions between muscle cells are electrical, although chemical interactions between nerve and muscle cells are probable. Whether or how slow waves in muscles affect nerves is unknown. How nerves or other structures susceptible to anoxia affect slow waves is also unknown. A complete discussion of the relationship between electrical and mechanical activity is beyond the scope of this paper, aside from the statement that slow waves usually trigger spikes and spikes trigger contraction. How slow waves exert control over muscle excitability to bring about the complex motility patterns of the intestine was not discussed; little is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnstock, G., Holman, M. E., andProsser, C. L. Electrophysiology of smooth muscle.Physiol Rev 43:482, 1963.

    PubMed  Google Scholar 

  2. Bülbring, E., andKuriyama, H. Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea pig taenia coli.J Physiol (London)166:29, 1963.

    PubMed  Google Scholar 

  3. Kosterlitz, H. W., andWatt, A. J. Adrenergic receptors in the guinea pig ileum.J Physiol (London)177:11, 1965.

    Google Scholar 

  4. Norberg, K. A. Adrenergic innervation of the intestinal wall studied by fluorescence microscopy.Int J Neuropharmacol 3:379, 1964.

    Google Scholar 

  5. Hollands, B. C. S., andVanov, S. Localization of catechol amines in visceral organs and ganglia of the rat, guinea pig and rabbit.Brit J Pharmacol 25:307, 1965.

    PubMed  Google Scholar 

  6. Bennett, M. R., Burnstock, G., andHolman, M. E. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea pig taenia coli.J Physiol (London)182:541, 1966.

    PubMed  Google Scholar 

  7. Bennett, M. R., Burnstock, G., andHolman, M. E. Transmission from perivascular inhibitory nerves to the smooth muscle of the guinca pig taenia coli.J Physiol (London)182:527, 1966.

    PubMed  Google Scholar 

  8. Gillespie, J. S. Spontaneous mechanical and electrical activity of stretched and unstretched intestinal smooth muscle cells and their response to sympathetic nerve stimulation.J Physiol (London)162:54, 1961.

    Google Scholar 

  9. Gonella, J. Étude de l'activite electrique des fibres musculaires longitudinale du duodenumin vivo. Action de la stimulation des nerfs vagues.C R Soc Biol (Paris)158:2409, 1964.

    Google Scholar 

  10. Gillespie, J. S. The electrical and mechanical responses of intestinal smooth muscle cells to stimulation of their extrinsic parasympathetic nerves.J Physiol (London)162:76, 1962.

    PubMed  Google Scholar 

  11. Bülbring, E., Lin, R. C. Y., andSchofield, G. An investigation of the peristaltic reflex in relation to anatomical observations.Quart J Exp Physiol 43:26, 1958.

    PubMed  Google Scholar 

  12. Bülbring, E., andLin, R. C. Y. The effect of intraluminal application of 5-hydroxy-tryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. (London) 140:381, 1958.

    Google Scholar 

  13. Ginzel, K. H. Are mucosal nerve fibres essential for the peristaltic reflex?Nature 184:1235, 1959.

    Google Scholar 

  14. Boullin, D. J. Observations on the significance of 5-hydroxytryptamine in relation to the peristaltic reflex of the rat.Brit J Pharmacol 23:14, 1964.

    PubMed  Google Scholar 

  15. Hukuhara, T., Nakayama, S., andNanba, R. The effect of 5-hydroxytryptamine upon the intestinal motility, especially with respect to the intestinal mucosal intrinsic reflex.J Jap Physiol 10:420, 1960.

    Google Scholar 

  16. Daniel, E. E. Further studies of the pharmacology of the pyloric region: Analysis of the effects of intra-arterial histamine, serotonin, phenyldiguanide, morphine and other drugs on the antrum and duodenal bulb.Canad J Physiol Pharmacol 44:981, 1966.

    Google Scholar 

  17. Kosterlitz, H. W., andLees, G. M. Pharmacological analysis of intrinsic intestinal reflexes.Pharmacol Rev 16:301, 1964.

    PubMed  Google Scholar 

  18. Gershon, M. D., Deakontides, A. B., andRoss, L. L. Serotonin: synthesis and release from the myenteric plexus of the mouse intestine.Science 149:197, 1965.

    PubMed  Google Scholar 

  19. Dewey, M. M., andBarr, L. Intercellular connection between smooth muscle cells: The nexus.Science 137:670, 1962.

    Google Scholar 

  20. Kobayashi, M., Nagai, T., andProsser, C. L. Electrical interaction between muscle layers of cat intestine.Amer J Physiol 211:1281, 1966.

    PubMed  Google Scholar 

  21. Lane, B. P., andRhodin, J. A. G. Cellular interrelationships and electrical activity in two types of smooth muscle.J Ultrastruct Res 10:470, 1964.

    PubMed  Google Scholar 

  22. Bülbring, E. Membrane potentials of smooth muscle fibres of the taenia coli of the guinea pig.J Physiol (London)125:301, 1954.

    Google Scholar 

  23. Holman, M. E. Membrane potentials recorded with high resistance microelectrodes: and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guinea pig.J Physiol (London)141:464, 1958.

    PubMed  Google Scholar 

  24. Daniel, E. E., Honour, A. J., andBogoch, A. Electrical activity of the longitudinal muscle of dog small intestine studied in vivo using microelectrodes.Amer J Physiol 198:113, 1960.

    PubMed  Google Scholar 

  25. Kuriyama, H. The influence of potassium sodium and chloride on the membrane potential of the smooth muscle of the taenia coli.J Physiol (London)166:15, 1963.

    PubMed  Google Scholar 

  26. Bortoff, A. Slow potential variations of small intestines.Amer J Physiol 201:203, 1961.

    Google Scholar 

  27. Bortoff, A. Electrical activity of intestine recorded with pressure electrodes.Amer J Physiol 201:209, 1961.

    Google Scholar 

  28. Bortoff, A. Configuration of intestinal slow waves obtained by monopolar recording techniques.Amer J Physiol 213:157, 1967.

    PubMed  Google Scholar 

  29. Daniel, E. E., Carlow, D. R., Wachter, B. T., Sutherland, W. H., andBogoch, A. Electrical activity of the small intestine.Gastroenterology 37:268, 1959.

    PubMed  Google Scholar 

  30. Bozler, E. Electrophysiological studies on the motility of the gastrointestinal tract.Amer J Physiol 122:614, 1938.

    Google Scholar 

  31. Bozler, E. The action potentials of the stomach.Amer J Physiol 144:693, 1945.

    Google Scholar 

  32. Bozler, E. The relation of the action potential to mechanical activity in intestinal muscle.Amer J Physiol 146:496, 1946.

    Google Scholar 

  33. Armstrong, H. I. O., Milton, G. W., andSmith, A. W. M. Electropotential changes in the small intestine.J Physiol (London)131:147, 1956.

    PubMed  Google Scholar 

  34. Haladay, D. A., Volk, H., andMandel, J. Electrical activity of the small intestine with special reference to the origin of rhythmicity.Amer J Physiol 195:505, 1958.

    PubMed  Google Scholar 

  35. Daniel, E. E., Wachter, B. T., Honour, A. J., andBogoch, A. The relationship between electrical and mechanical activity of the small intestine of dog and man.Canad J Biochem 38:777, 1960.

    PubMed  Google Scholar 

  36. Bass, P., Code, C. F., andLambert, E. H. Motor and electric activity of the duodenum.Amer J Physiol 201:287, 1961.

    PubMed  Google Scholar 

  37. Bortoff, A. Electrical transmission of slow waves from longitudinal to circular intestinal muscle.Amer J Physiol 209:1254, 1965.

    PubMed  Google Scholar 

  38. Christensen, J., Schedl, H. P., andClifton, J. A. The small intestinal basic electrical rhythm (BER) frequency gradient in normal men and in patients with a variety of diseases.Gastroenterology 50:301, 1966.

    Google Scholar 

  39. Bass, P., andWhiley, J. Effects of ligation and morphine on electric and motor activity of the duodenum of the dog.Amer J Physiol 208:908, 1965.

    PubMed  Google Scholar 

  40. Tamai, T., andProsser, G. L. Differentiation of slow potentials and spikes in longitudinal muscle of cat intestine.Amer J Physiol 210:452, 1966.

    PubMed  Google Scholar 

  41. Daniel, E. E. Effects of intra-arterial perfusions on electrical activity and electrolyte contents of dog small intestine.Canad J Physiol Pharmacol 43:551, 1965.

    Google Scholar 

  42. Daniel, E. E., andChapman, K. M. Electrical activity on the gastrointestinal tract as an indication of mechanical activity.Amer J Dig Dis 8:54, 1963.

    PubMed  Google Scholar 

  43. Kobayashi, M., Prosser, C. L., andNagai, T. Electrical properties of intestinal muscle as measured intracellularly and extracellularly.Amer J Physiol 213:275, 1967.

    PubMed  Google Scholar 

  44. Daniel, E. E. The electrical and contractile activity of the pyloric region in dogs and the effects of drugs.Gastroenterology 49:403, 1965.

    PubMed  Google Scholar 

  45. Daniel, E. E. Electrical and contractile responses of the pyloric region to adrenergic and cholinergic drugs.Canad J Physiol Pharmacol 44:951, 1966.

    Google Scholar 

  46. Prosser, C. L., andSperelakis, N. Transmission in ganglion-free circular muscle from the cat intestine.Amer J Physiol 187:536, 1956.

    PubMed  Google Scholar 

  47. Khin, J. Some mechanisms underlying electrical and mechanical activity of the dog small intestine. Thesis, University of Alberta, Edmonton, Alberta, 1967.

    Google Scholar 

  48. Nonomura, Y., Hotta, Y., andObashi, H. Tetrodotoxin and manganese ions: Effects on electrical activity and tension in taenia coli of guinea pig.Science 152:97, 1966.

    PubMed  Google Scholar 

  49. Kuriyama, H., Osa, T., andToida, N. Effect of tetrodotoxin on smooth muscle cells of the guinea pig taenia coli.Brit J Pharmacol 27:366, 1966.

    PubMed  Google Scholar 

  50. Kao, C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena.Pharmacol Rev 18:997, 1966.

    PubMed  Google Scholar 

  51. Van Harn, G. L. Responses of muscles of cat small intestine to autonomic nerve stimulation.Amer J Physiol 204:352, 1963.

    PubMed  Google Scholar 

  52. Szurszewski, J. H. The relationship of the myenteric plexus to the electrical and mechanical activity of the small intestine in unanesthetized animals. Thesis presented at the University of Illinois, Urbana, Illinois.

  53. Hukuhara, T., Sumi, J., andKotani, S. The role of the ganglion cells in the small intestine taken in the intestinal intrinsic reflex.J Jap Physiol 11:281, 1961.

    Google Scholar 

  54. Hukuhara, T., Kotani, S., andSato, G. Effects of destruction of intramural ganglion cells in colon motility; possible genesis of congenital megacolon.J Jap Physiol 11:635, 1961.

    Google Scholar 

  55. Hukuhara, T., Kotani, S., andSato, G. Comparative studies on the motility of the normal, denervated and aganglionic Thiry-loops.J Jap Physiol 12:348, 1962.

    Google Scholar 

  56. Nagai, T., andProsser, C. L. Patterns of conduction in smooth muscle.Amer J Physiol 204:910, 1963.

    PubMed  Google Scholar 

  57. Nagai, T., andProsser, C. L. Electrical parameters of smooth muscle cells.Amer J Physiol 204:915, 1963.

    PubMed  Google Scholar 

  58. Burnstock, G., andProsser, C. L. Conduction in smooth muscles: Comparative electrical properties.Amer J Physiol 199:553, 1960.

    PubMed  Google Scholar 

  59. Barr, L. Transmembrane resistance of smooth muscle cells.Amer J Physiol 200:1251, 1961.

    PubMed  Google Scholar 

  60. Barr, L. Propagation in vertebrate visceral smooth muscle.J Theor Biol 4:73, 1963.

    PubMed  Google Scholar 

  61. Kuriyama, H., andTomita, T. The responses of single smooth muscle cells of guinea pig taenia coli to intracellularly applied currents and their effect on the spontaneous electrical activity.J Physiol (London) 178:270, 1965.

    Google Scholar 

  62. Tomita, T. Electrical responses of smooth muscle to external stimulation in hypertonic solution.J Physiol (London) 183:450, 1966.

    Google Scholar 

  63. Sperelakis, N., andTarr, M. Weak electrotonic interaction between neighboring visceral smooth muscle cells.Amer J Physiol 208:737, 1965.

    PubMed  Google Scholar 

  64. Tomita, T. Membrane capacity and resistance of mammalian smooth muscle.J Theor Biol 12:216, 1966.

    PubMed  Google Scholar 

  65. Vayo, H. W. Determination of the electrical parameters of vertebrate visceral smooth muscle.J Theor Biol 9:263, 1965.

    PubMed  Google Scholar 

  66. Koide, F. T. The determination of the intercellular bridge resistance between smooth muscle cells.J Theor Biol 12:89, 1966.

    PubMed  Google Scholar 

  67. Goodford, P. J., andHermansen, K. Sodium and potassium movements in the unstriated muscle of the guinea pig in taenia coli.J Physiol (London) 158:426, 1961.

    Google Scholar 

  68. Hellemans, J., Vantrappen, G., Valembois, P., Janssens, J., andVandenbroucke, J. The electrical activity of striated and smooth muscle of the esophagus.Amer J Dig Dis 13:320, 1968.

    PubMed  Google Scholar 

  69. Daniel, E. E. Unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, E.E. The electrical activity of the alimentary tract. Digest Dis Sci 13, 297–319 (1968). https://doi.org/10.1007/BF02233006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02233006

Keywords

Navigation