Skip to main content
Log in

Architecture in cortical bone and ultrasound transmission velocity

  • Originals
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Summary

The square of ultrasound transmission velocity in a material is correlated to the modulus of elasticity, which is an indicator of its mechanical properties. This might make the measurement of ultrasound transmission velocity useful in the noninvasive diagnosis of bone diseases. Bone, however, is not an isotropic material but is architecturally structured. The aim of our study was to investigate and especially to quantify the influence of architecture in cortical bone on ultrasound transmission velocity. Twenty-two rectangular, flat specimens of cortical bone were prepared from diaphysis of fresh pig radius. Ultrasound transmission velocity was measured parallel and perpendicular to direction of Haversian channels. It was found to be 3647 ± 41 m/s parallel to and 2821 ± 29 m/s perpendicular to Haversian channels respectively (p<0.001). Our results clearly indicate that there is an important influence of architecture in cortical bone on ultrasound transmission velocity which has to be taken into account in its clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agren, M., Karellas, A., Leahey, D., Marks, S., Baran, D. Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women. Calcif Tissue Int 1991, 48, 240–244.

    PubMed  Google Scholar 

  2. Baran, D.T., Kelly, A.M., Karellas, A., Gionet, M., Price, M., Leahey, D., Steuterman, S., McSherry, B., Roche, J. Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 1988, 43, 138–142.

    PubMed  Google Scholar 

  3. Baran, D.T., McCarthy, C.K., Leahey, D., Lew, R. Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study. Osteoporosis Int 1991, 1, 110–113.

    Google Scholar 

  4. McCloskey, E.V., Murray, S.A., Charlesworth, D., Miller, C., Fordham, J., Clifford, K., Atkins, R., Kanis, J.A. Assessment of broadband ultrasound attenuation in the calcis in vitro. Clinical Science 1990, 78, 221–225.

    PubMed  Google Scholar 

  5. McCloskey, E.V., Murray, S.A., Miller, C., Charlesworth, D., Tindale, W., O'Doherty, D.P., Bickerstaff, D.R., Hamdy, N.A.T., Kanis, J.A. Broadband ultrasound attenuation in the os calcis: relationship to bone mineral at other skeletal sites. Clinical Science 1990, 78, 227–233.

    PubMed  Google Scholar 

  6. Hosie, C.J., Smith, D.A., Deacon, A.D., Langton, D.M. Comparison of broadband ultrasonic attenuation of the os calcis and quantitative computed tomography of the distal radius. Clin Phys Physiol Meas 1987, 8, 303–308.

    Article  PubMed  Google Scholar 

  7. McKelvie, M.L., Fordham, J., Clifford, C., Palmer, S.B. In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone 1989, 10, 101–104.

    Article  PubMed  Google Scholar 

  8. Resch, H., Pietschmann, P., Bernecker, P., Krexner, E., Willvonseder, R. Broadband ultrasound attenuation: a new diagnostic method in osteoporosis. AJR 1990, 155, 825–828.

    PubMed  Google Scholar 

  9. Jeffcott, L.B., McCartney, R.N. Ultrasound as a tool for assessment of bone quality in horse. Veterinary Record 1985, 116, 337–342.

    PubMed  Google Scholar 

  10. Rubin, C.T., Pratt, Jr., G.W., Porter, A.L., Lanyon, L.E., Poss, R. Ultrasonic measurement of immobilization-induced osteopenia: an experimental study in sheep. Calcif Tissue Int 1988, 42, 309–312.

    PubMed  Google Scholar 

  11. Heany, R.P., Avioli, L.V., Chesnut III C.H., Lappe, J., Recker, R.R., Brandenburger, G.H. Osteoporotic bone fragility — detection by ultrasound transmission velocity. JAMA 1989, 261, 2986–2990.

    Article  PubMed  Google Scholar 

  12. Kann, P., Schulz, G., Schulz, U., Klaus, D., Nink, M., Beyer, J. Apparent phalangeal ultrasound transmission velocity: relation to age and bone mineral density. Acta Endocrinol 1992, 126 Suppl 4, 27.

    Google Scholar 

  13. Lehmann, R., Wapniarz, M., Kvasnicka, H.M., Klein, K., Allolio, B. Assessment of bone fragility by ultrasound transmission velocity — influence of menopause and estrogen substitution therapy. Acta Endocrinol 1992, 126 Suppl 4, 27.

    Google Scholar 

  14. Miller, C.G., Herd, R.J.M., Ramalingham, T., Blake, G.M., Fogelman, I. Ultrasonic velocity measurements through the calcaneus: which velocity should we measure? In: Current Research in Osteoporosis and Bone Mineral Measurement II: 1992. Ed.: E.F.J. Ring, British Institute of Radiology, London, 1992, 45–46.

    Google Scholar 

  15. Sedlin, E.D., Hirsch, C. Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scandinav 1966, 37, 29–48.

    Google Scholar 

  16. Abendschein, W., Hyatt, G.W. Ultrasonics and selected properties of bone. Clin Orthop 1970, 69, 294–301.

    PubMed  Google Scholar 

  17. Gobrecht, H. Bermann-Schäfer Lehrbuch der Experimentalphysik. Band I Mechanik, Akustik, Wärme. Berlin, New York, Walter de Gruyter, 1974, 240–248.

    Google Scholar 

  18. Greenfield, M.A., Craven, J.D., Huddlestone, A., Kehrer, M.L., Wishko, D., Stern, R. Measurement of the velocity of ultrasound in human cortical bone in vivo. Radiology 1981, 138, 701–710.

    PubMed  Google Scholar 

  19. Maluche, H.H., Faugere, M.-C. Bone biopsies: Histology and histomorphometry of bone. In: Metabolic Bone Disease and Clinically Related Disorders. Eds.: Avioli, L.V., Krane, S.M., W.B. Saunders Company, Philadelphia, 283–328.

  20. Ashman, R.B., Rho, J.Y., Turner, C.H. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomechanics 1989, 22, 895–900.

    Article  Google Scholar 

  21. Yoon, H.S., Katz, J.L. Ultrasonic wave propagation in human cortical bone — I. Theoretical considerations for hexagonal symmetry. J Biomechanics 1976, 9, 407–412.

    Article  Google Scholar 

  22. Yoon, H.S., Katz, J.L. Ultrasonic wave propagation in human cortical bone — II. Measurements of elastic properties and microhardness. J Biomechanics 1976, 9, 459–464.

    Article  Google Scholar 

  23. Ashmann, R.B., Cowin, S.C., van Buskirk, W.C., Rice, J.C. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomechanics 1984, 17, 349–361.

    Article  Google Scholar 

  24. Katz, J.L., Yoon, H.S., Lipson, S., Maharidge, R., Meunier, A., Christel, P. The effects of remodeling on the elastic properties of bone. Calcif Tissue Int 1984, 36, S31-S36.

    PubMed  Google Scholar 

  25. Slatopolsky, E., Coburn, J.W. Renal osteodystrophy. In: Metabolic Bone Disease and Clinically Related Disorders. Eds: Avioli, L.V., Krane, S.M., W.B. Saunders Company, Philadelphia, 1990, 452–474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kann, P., Schulz, U., Nink, M. et al. Architecture in cortical bone and ultrasound transmission velocity. Clin Rheumatol 12, 364–367 (1993). https://doi.org/10.1007/BF02231581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02231581

Key words

Navigation