Refractories and Industrial Ceramics

, Volume 37, Issue 1–2, pp 21–26 | Cite as

Problem of evaluating the crack resistance in ceramics of Si3N4 and ZrO2

  • G. A. Gogotsi
  • V. I. Galenko
  • V. P. Zavada
  • B. A. Ozerskii
  • D. Yu. Ostrovoi
  • Toshiro Kobayashi


The mechanical behavior of silicon nitride and zirconium dioxide ceramics is investigated in a wide temperature range. Much attention is paid to crack resistance under the conditions of the ambient. Data obtained by different methods used for evaluating crack resistance are analyzed, and it is shown that the best results have been obtained in tests in which the concentrator was an indentation of a Vickers pyramid. The analysis was conducted using fractographic investigations of the materials and data of tests of a model material of zirconium dioxide.


Silicon Dioxide Zirconium Nitride Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Rowcliffe and S. M. Johnson, “Mechanical properties of single crystal ceramics,”Laser Nonlinear Opt. Mater. (SPIF),681, 143–158 (1986).Google Scholar
  2. 2.
    D. Munz, “Werkstoffmechanische characteristisierung keramischer werkstoffe,”Techn. Mitteil.,80(4), 210–216 (1987).Google Scholar
  3. 3.
    G. D. Quinn, J. Salem, I. Baron, Kyn Cho, M. Foley, and Ho Fang, “Fracture toughness of advanced ceramics at room temperature,”J. Res. National Inst. Stand. Technol.,97(5), 579–607 (1992).Google Scholar
  4. 4.
    G. D. Quinn, J. J. Kubler, and R. J. Gettings, “Fracture toughness of advanced ceramics by the surface crack in flexure (SCF) method: a VAMAS round robin,”VAMAS Report, No. 17, 1–63 (with Appendix) (1994).Google Scholar
  5. 5.
    G. A. Gogotsi, V. P. Zavada, and V. P. Petrenko, “Determination of crack resistance of ceramics in flexure of beams with a notch,”Poroshk. Metallurg., No. 1, 67–72 (1985).Google Scholar
  6. 6.
    G. A. Gogotsi, B. A. Ozerskii, and O. B. Oksametnaya, “Behavior of polycrystalline and single crystal zirconia with imposition of an indenter,”Ogneupory, No. 11–12, 4–9 (1992).Google Scholar
  7. 7.
    G. A. Gogotsi, V. I. Galenko, B. A. Ozerskii, E. E. Lomonova, V. A. Myzina, M. A. Vishnyakova, and V. F. Kalabukhova, “Strength and crack resistance of zirconia crystals with yttrium and terbium oxides,”Ogneupory, No. 6, 2–8 (1993).Google Scholar
  8. 8.
    G. A. Gogotsi and V. P. Zavada, “Certification of modern ceramics in accordance with their mechanical properties,”Probl. Prochn., No. 1, 68–75 (1994).Google Scholar
  9. 9.
    A. G. Evans and E. A. Charles, “Fracture toughness determination by indentation,”J. Am. Ceram. Soc.,59(7–8), 371–372 (1976).Google Scholar
  10. 10.
    P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: II. Strength method,”J. Am. Ceram. Soc.,64(9), 539–543, (1981).Google Scholar
  11. 11.
    J. E. Srawley, “Wide-range stress intensity factor expression for ASTM E-399 standard fracture toughness specimens,”Int. J. Fract.,12, 475–476 (1976).Google Scholar
  12. 12.
    G. A. Gogotsi and V. P. Zavada, USSR Inventor's Certificate No. 1193510, “A method of forming a crack from the tip of a notch,”Byull. Otkryt. Izobret., No. 43, 40 (1985).Google Scholar
  13. 13.
    JIS R 1607, Testing Methods for Fracture Toughness of High Performance Ceramics, Japanese Industrial Standard, Japanese Standards Association, Tokyo (1990).Google Scholar
  14. 14.
    D. B. Marshall and A. G. Evans, “Reply to comment on elastic / plastic indentation damage in ceramics: The median / radial crack system,”J. Am. Ceram. Soc.,64(12), 182–183 (1981).Google Scholar
  15. 15.
    K. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios,”J. Mater. Sci. Lett.,1(1), 13–16 (1982).Google Scholar
  16. 16.
    T. Kobayashi, K. Matsunuma, and H. Ikawa, “Evaluation of static and dynamic fracture toughness in ceramics,”Engin. Fracture Mech.,31(5), 873–885 (1988).Google Scholar
  17. 17.
    S. Veitch, M. Marshall, and M. V. Swain, “Strength and toughness of Mg-PSZ and Y-TZP materials at cryogenics temperatures,” in:Mater. Res. Soc. Symp. Proc.,78, 97–106 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. A. Gogotsi
    • 1
  • V. I. Galenko
    • 1
  • V. P. Zavada
    • 1
  • B. A. Ozerskii
    • 1
  • D. Yu. Ostrovoi
    • 1
  • Toshiro Kobayashi
    • 2
  1. 1.Institute of Strength Problems of the National Academy of Sciences of UkraineKievUkraine
  2. 2.Technological UniversityToyehashiJapan

Personalised recommendations