Skip to main content

Advertisement

Log in

An animal model of hypoxia-induced perinatal seizures

  • Animal Models Relevant to Human Epilepsies
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

Clinically, neonatal hypoxic encephalopathy is commonly associated with seizure activity. Here we describe a rodent model of cerebral hypoxia in which there is are age dependent effects of hypoxia, with hypoxia inducing seizure activity in the immature rat, but not in the adult. Global hypoxia (3–4% O2) induced acute seizure activity during a window of development between postnatal day (P5–17), peaking at P10–12. Animals which had been rendered hypoxic between P10–12 had long term decreases in seizure threshold, while animals exposed at younger (P5) or older (P60) ages did not. Antagonists of excitatory amino acid (EAA) transmission appear to be superior to benzodiazepines in suppressing the acute and long term effects of perinatal hypoxia, suggesting involvement of the EAA system in these phenomena. No significant histologic damage occurs in this model, suggesting that functional alterations take place in neurons when exposed to an hypoxic insult at a critical developmental stage. Future work is directed at evaluating molecular and cellular events underlying the permanent increase in seizure susceptibility produced by this model.

Sommario

Nell'uomo l'encefalopatia ipossica del neonato è generalmente associata a crisi epilettiche. Qui descriviamo un modello di ipossia cerebrale nel roditore in cui gli effetti dell'ipossia sono età-dipendenti in quanto inducono crisi nel ratto immaturo ma non nell'adulto. L'ipossia globale (3–4% O2) è risultata indurre crisi in un periodo limitato dello sviluppo postnatale (P5–P17) con un picco di efficacia P10 e P12. Gli animali resi ipossici tra P10 e P12 manifestavano un abbassamento persistente della soglia convulsiva che era invece assente in quelli esposti all'ipossia in età precedente (P5) o successiva (P60). Gli antagonisti della trasmissione mediata dagli aminoacidi eccitatori (EAA) sono risultati più potenti delle benzodiazepine nel sopprimere sia gli effetti convulsivanti acuti che quelli persistenti da ipossia perinatale, cosa che porta a riferirli all'azione del sistema degli EAA. L'esame istologico non evidenzia significative alterazioni in accordo con l'idea che l'attività epilettogena dipenda da una alterazione funzionale indotta dall'ipossia in neuroni che si trovano in una fase critica di sviluppo. Gli ulteriori sviluppi di questo lavoro saranno indicizzati alla valutazione degli eventi molecolari e cellulari responsabili dell'aumento persistente di suscettibilità alle crisi che si verifica in questo modello.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aicardi J., Chevrie J.J.:Convulsive status epilepticus in infants and children. A study of 239 cases. Epilepsia, 11: 187–197, 1970.

    PubMed  Google Scholar 

  2. Aruffo C., Ferszt R., Hildebrandt A.G., Cervox-Navarroii J.: In vitroneuronal plasticity triggered by subtoxic doses of monosodium glutamate. Clin. Biol. Res. 253: 229–237, 1987.

    Google Scholar 

  3. Baudry M., Davis J.L.:Long term potentiation: a debate of current issues. MIT Press: Cambridge, 1991.

    Google Scholar 

  4. Bergamasco B., Penna P., Ferrero P., Gavinelli R.:Neonatal hypoxia and epileptic risk: A clinical prospective study. Epilepsia, 25: 131–146, 1984.

    PubMed  Google Scholar 

  5. Bowe M.A., Nadler J.V.:Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells. Developmental Brain Research, 56: 55–61, 1990.

    PubMed  Google Scholar 

  6. Choi D.W.:Glutamate neurotoxicity and diseases of the nervous system. Neuron 1 (8): 623–634, 1988.

    PubMed  Google Scholar 

  7. Choi D.W.:Excitatory cell death. J. Neurobiol., 23: 1261–1276, 1992.

    PubMed  Google Scholar 

  8. Choi D.W., Rothman S.N.:The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann. Rev. Neurosci., 12: 171–182, 1990.

    Google Scholar 

  9. Cline H.T., Constantine-Paton M.:NMDA receptor antagonists disrupt the retionotectal topographic map. Neuron., 3: 413–326, 1989.

    PubMed  Google Scholar 

  10. Collingridge G.L., Singer W.:Excitatory amino acid receptors and synaptic plasticity. Trends in Pharmacol. Sci., 11: 290–296, 1990.

    Google Scholar 

  11. Dubinsky J.M., Rothman S.M.:Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J. Neurosci., 11: 2545–2551, 1991.

    PubMed  Google Scholar 

  12. Facchinetti F., Ciani E., Dall'olio R., Virgili M., Contestable A., Fonnum F.:Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801. Brain. Res. Dev. Brain Res., 74: 219–224, 1993.

    PubMed  Google Scholar 

  13. Gunn A.J., Draunow M., Faull R.L.M., Gluckman D.:Effects of hypoxia-ischemia and seizures on neuronal and glial-lik c-fos protein levels in the infant rat. Brain Res., 531: 105–116, 1990.

    PubMed  Google Scholar 

  14. Harris G.W., Ganong A.H., Cotman C.W.:Long term potentiation in the hippocampus involves activation of the NMDA receptors. Brain Res. 323: 132–137, 1984.

    PubMed  Google Scholar 

  15. Hattori H., Morin A.M., Schwartz P.H., Fujikawa D.G., Wasterlain C.G.:Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat. Neurology, 39 (5): 713–718, 1989.

    PubMed  Google Scholar 

  16. Himwich W.:Developmental Neurobiology. Charles Thomas Publishers: Springfield, IL, 1970.

    Google Scholar 

  17. Holmes G.L.:Neonatal Seizures. In: T.A. Pedley and B.S. Meldrum (Eds.) Recent Advances in Epilepsy. New York: Churchill Livingstone, pp. 207–237, 1985.

    Google Scholar 

  18. Holmes G.L., Kull L.L.:Neonatal seizures. Am. J. EEG Technol., 30: 281–308, 1990.

    Google Scholar 

  19. Insel T.R., Miller L., Gelhard R.E.:The ontogeny of excitatory amino acid in the rat forebrain I: N-methyl-d-aspartate and quisqualate receptors. Neuroscience, 35:31–43, 1990.

    PubMed  Google Scholar 

  20. Jensen F.E., Alvarado S.P., Blume H., Firkusny I.:Effect of pharamcologic seizure suppression during acute perinatal hypoxia on subsequent long term seizure susceptibility. Epilepsia, 34(6): 22, 1993 (Abstract).

    Google Scholar 

  21. Jensen F.E., Applegate C.D., Burchfield J.L., Lombroso C.T.:Differential effects of perinatal hypoxia and anoxia on long term in seizure susceptibility in the rat. Life Sci, 49(5): 399–307, 1991.

    PubMed  Google Scholar 

  22. Jensen F.E., Applegate C.D., Holtzman D., Belin T., Burchfield J.:Epileptogenic effects of hypoxia on immature rodent brain. Ann. Neurol., 29(6): 629–637, 1991.

    PubMed  Google Scholar 

  23. Jensen F.E., Firkusny I., Mower G.:Differences in c-fos immunoreactivity due to age and mode of seizure induction. Mol. Br. Res., 17: 185–193, 1993.

    Google Scholar 

  24. Jensen F.E., Firkusny I.R., Blume H.K.:Improved anticonvulsant efficacy of EAA antagonists over conventional AED's in a rat model of perinatal hypoxia-induced seizures. Epilepsia, 33: 20, 1992.

    Google Scholar 

  25. Jensen F.E., Holmes G.H., Lombroso C.T., Blume H., Firkunsny I.:Age dependent long term changes in seizure susceptibility and neurobehavior following hypoxia in the rat. Epilepsia, 33(6): 971–980, 1992.

    PubMed  Google Scholar 

  26. Jensen F.E., Wang C.D., Stevens M.C.:Enhanced LTP in hippocampal slices following in vivo perinatal hypoxia. Society for Neuroscience Abs., 20:1668, 1994.

    Google Scholar 

  27. Kleinschmidt A., Bear M.F., Winger W.:Blockage of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex. Science, 238: 355–358, 1987.

    PubMed  Google Scholar 

  28. Mares P., Maresova D., Schickova R.:Effect of antiepileptic drugs on metrazol convulsions during ontogenesis in the rat. Physiologia Bohemoslovacoa, 30: 113–121, 1981.

    Google Scholar 

  29. Mattson M.:Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. Rev., 13: 179–212, 1988.

    Google Scholar 

  30. McDonald J.W., Johnston M.V.:Psysiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Brain Res. Rev., 15(1): 41–70, 1990.

    PubMed  Google Scholar 

  31. McDonald J.W., Silverstein F.S., Cardona D., Hudson C., Chen R., Johnston M.V.:Systemic administration of MK-801 protects against N-methyl-d-aspartate-neurotoxicity in perinatal rats. Neuroscience, 36: 589–599, 1990.

    PubMed  Google Scholar 

  32. Meldrum B., Garthwaite J.:Excitatory amino acid neurotoxicity and neurodegenerative disease, Trends Pharmacol. Sci., 11: 379–387, 1990.

    PubMed  Google Scholar 

  33. Michaels R., Rothman S.:Glutamate toxicity in vitro:antagonist pharmacology and intracellular calciumn concentrations. J. Neuroscience, 10: 283–292, 1990.

    Google Scholar 

  34. Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeberg P.H.:Heteromic NMDA receptors: molecular and functional distinction of subtypes. Science, 256: 1217–1221, 1992.

    PubMed  Google Scholar 

  35. Morgan J.I., Cohen D.R., Hempstead J.L., Curran T.:Mapping patterns of c-fos expression in the central nervous system after seizure. Science, 237: 192–201, 1987.

    PubMed  Google Scholar 

  36. Morgan J.I., Curran T.:Stimulus-transcription coupling in neurons: role of cellular immediateearly genes. Trends Neurosci., 12(11): 459–462, 1989.

    PubMed  Google Scholar 

  37. Morgan J.I., Curran T.:Proto-oncogene transcription factors and epilepsy. Trends in Pharmacology, 12: 343–349, 1991.

    Google Scholar 

  38. Morgan J.I., Curran T.:Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Ann. Rev. Neurosci., 14: 421–451, 1991.

    PubMed  Google Scholar 

  39. Olney J.W., Labnuyere J., Wang G., Wozniak D.F., Price M.T., Sesma M.A.:NMDA antagonist neurotoxicity: mechanism and prevention. Science, 254: 1515–1518, 1991.

    PubMed  Google Scholar 

  40. Olney J.W., Labruyere J., Price M.T.:Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science, 244: 1360–1362, 1989.

    PubMed  Google Scholar 

  41. Pearce I.A., Cambray-Deakin M.A., Burgoyne R.D.:Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS. Lett., 223: 143–147, 1987.

    PubMed  Google Scholar 

  42. Pellegrini-Giampietro D.E.:Are Ca 2+ permeable kainate/AMPA receptors more abundant in immature brain. Neurosci. Lett., 144: 65–69, 1992.

    PubMed  Google Scholar 

  43. Pollard H.:Transient expression of the NR2C subunit of the NMDA receptor in developing rat brain. Neuro Report., 4: 411–414, 1993.

    Google Scholar 

  44. Rauschecker J., Hahn S.:Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature (Lond.), 326: 183–185, 1987.

    Google Scholar 

  45. Rogawski M.:The NMDA receptor, NMDA antagonists and epilepsy therapy: A status report. Drugs., 44: 279–292, 1992.

    PubMed  Google Scholar 

  46. Romijn H.J.:At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Human Development, 26 61–67, 1991.

    PubMed  Google Scholar 

  47. Ruppert C., Willie W.:Proto-oncogene c-fos is highly induced by distruption of netonatal but not mature brain tissue. Mol. Br. Res., 2: 51–56, 1987.

    Google Scholar 

  48. Scherwin A.L., Val Gelder N.M.:Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy. In: A. V. Delgado-Escueta, A.A. Ward, Jr. D.M. Woodbury and R.J. Porter (Eds.) Advances in Neurology, Raven Press: New York, 1994, pp. 1011–1032.

    Google Scholar 

  49. Sheng M., Greenberg M.:The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 4: 477–485, 1990.

    PubMed  Google Scholar 

  50. Sherwood N.M., Timiras P.S.:A Stereotaxic Atlas of the Developing Rat Brain. Univ. of Calif. Press: Berkeley., 1970.

    Google Scholar 

  51. Sonnenberg J.L., Macgregor-Leon P.F., Curran T., Morgan J.I.:Dynamic alterations occur in the levels and composition of factor AP-1 complexes after seizures. Neuron, 3: 359–365, 1989.

    PubMed  Google Scholar 

  52. Thompson A.M., West D.C.:N-methyl-d aspartate receptors mediate epileptiform activity evoked in some, but not all, conditions in rat neocortical slices. Neuroscience, 19: 1161–1177, 1986.

    PubMed  Google Scholar 

  53. Vanier M.T., Holm M., Ohman R., Svennerholm L.:Developmental profiles of gangliosides in human and rat brain. J. Neurochem., 18: 581–592, 1971.

    PubMed  Google Scholar 

  54. Volpe J.J.:Neurology of the Newborn. W.B. Saunders: Philadelphia, 1987.

    Google Scholar 

  55. Volpe J.J.:Neonatal seizures. Pediatrics, 84: 422–428, 1989.

    PubMed  Google Scholar 

  56. Wang C., Jensen F.E.:Increased seizure susceptibility to low magnesium and hypoxia in immature hippocampal slices in suppressed by APV, a NMDA receptor antagonist. Soviety for Neuroscience Abstracts, 20: 396, 1994 (Abs.).

    Google Scholar 

  57. Wasterlain C.G., Hattori H., Yang C., Schwartz P.H., Rujikawa D.G., Morin A.M., Dwyer B.E.:Selective vulnerability of neuronal subpopulations during ontogeny reflects discrete molecular events associated with normal brain development. In: C.G. Wasterlain and P. Vert. (Eds.) Neonatal Seizures, Raven Press: New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, F.E. An animal model of hypoxia-induced perinatal seizures. Ital J Neuro Sci 16, 59–68 (1995). https://doi.org/10.1007/BF02229075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02229075

Key Words

Navigation