Open Systems & Information Dynamics

, Volume 2, Issue 3, pp 319–329 | Cite as

Entropy defect and information for two quantum states

  • L. B. Levitin
Article

Abstract

An explicit formula is obtained for the entropy defect and the (maximum) information for an ensemble of two pure quantum states; an optimal basis is found, that is, an optimal measurement procedure which enables one to obtain the maximum information. Some results are also presented for the case of two mixed states, described by second-order density matrices (for example, spin polarization matrices). It is shown that in the case of two states the optimal measurement is a direct von Neumann measurement performed in the subspace of the two states.

Keywords

Entropy Statistical Physic Mechanical Engineer System Theory Quantum State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. B. LevitinProc. of the 4th Conference on information and Coding Theory, Sec. II, Tashkent, 1969, pp. 111–115, (English translation in:Proc. of the Workshop on Quantum Communications and Measurement, QCM'94).Google Scholar
  2. [2]
    L. B. LevitinProc. of the 2nd Intern. Symp. on Info. Theory, Moscow-Yerevan, 1971, p. 144.Google Scholar
  3. [3]
    L. B. LevitinInformation, Complexity and Control in Quantum Physics. A. Blaquiere, S. Diner, and G. Lochak, eds., Springer-Verlag, Wien-New York, 1987, pp. 15–47.Google Scholar
  4. [4]
    L. B. Levitin,Proc. of the Workshop on Computation; PhysComp'92, IEEE Computer Society Press, Dallas, 1993, pp. 215–219.Google Scholar
  5. [5]
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics. Pergamon Press, Oxford 1965.Google Scholar
  6. [6]
    J. von Neumann,Mathematische Grundlagen der Quantenmechanik. Springer Verlag, Berlin, 1932.Google Scholar
  7. [7]
    E. Arthurs and J. L. Kelly, Bell System Tech. J.44, 725 (1965).Google Scholar
  8. [8]
    L. B. Levitin, and V. V. Mityngov, in1st Conference of Problems of Information Transmission by Laser Radiation, Kiev, 1968.Google Scholar
  9. [9]
    C. W. Helstrom, J. W. S. Liu, and J. P. Gordon, Proc. IEEE58 (10), 1587 (1970).Google Scholar
  10. [10]
    C. W. Helstrom,Quantum Detection and Estimation Theory. Academic, Press, New York, 1976.Google Scholar
  11. [11]
    A. Peres,Quantum Theory: Concepts and Methods, Kluwer Academic, Dordrecht, 1993.Google Scholar
  12. [12]
    A. Peres, Found. Phys.20 1441 (1990).Google Scholar
  13. [13]
    A. S. Holevo, Prob. Info. Transm.9 (3), 31 (1973).Google Scholar
  14. [14]
    E. B. Davies, IEEE Trans. on Info. Theory, IT-24, 596 (1979).Google Scholar
  15. [15]
    L. B. Levitin, in1981 IEEE Intern. Symp. on Information Theory, Santa Monica, CA, USA, 1981.Google Scholar
  16. [16]
    L. B. Levitin,Proc. of the Workshop on Physics of Computation: PhysComp'92, IEEE Computer Society Press, Dallas, 1993, pp. 220–222.Google Scholar
  17. [17]
    D. S. Lebedev and L. B. Levitin, Inform. Control9 (1), 1 (1966).Google Scholar
  18. [18]
    L. B. Levitin, Prob. Info. Transm.1 (1), 91 (1965).Google Scholar
  19. [19]
    L. B. Levitin, J. of Information and Optimization Sciences2 259 (1981).Google Scholar
  20. [20]
    L. B. Levitin, in3rd Intern. Symp. on Info. Theory, Tallin, 1973.Google Scholar
  21. [21]
    L. B. Levitin, inProc. of the 13th IUPAP Conf. on Stat. Physics. D. Cabib, D. G. Kuper, and I. Riess, eds., A. Hilger, Bristol, 1978.Google Scholar
  22. [22]
    L. B. Levitin,Proc. of the Workshop on Physics of Computation: PhysComp'92, IEEE Computer Society Press, 1993, pp. 223–226.Google Scholar
  23. [23]
    V. P. Belavkin and R. L. StratonovichProc. of 3rd Intern. Symp. on Info. Theory, Tallin, 1973, pp. 14–18.Google Scholar
  24. [24]
    V. P. Belavkin and R. L. Stratonovich, Radio Eng. Electron. Physics.18 (9), 1839 (1973).Google Scholar
  25. [25]
    L. P. Hughston, R. Josza, and W. K. Wootters, Phys. Letters A183, 14 (1993).Google Scholar
  26. [26]
    R. Josza, D. Roob, and W. K. Wootters, Phys. Rev.49 (2), 668 (1994).Google Scholar
  27. [27]
    C. Fuchs and C. M. Caves, in Proc. of the Intern. Workshop an Quantum Communications and Measurement, QCM'94.Google Scholar
  28. [28]
    B. Schumacher, Phys. Rev. A (to appear).Google Scholar
  29. [29]
    R. Josza and B. Schumacher, J. of Modern Optics (to appear).Google Scholar
  30. [30]
    C. W. Helstrom, Information and Control10, 254 (1967).Google Scholar

Copyright information

© Nicholas Copernicus University Press 1994

Authors and Affiliations

  • L. B. Levitin
    • 1
  1. 1.College of EngineeringBoston UniversityBostonUSA

Personalised recommendations