Journal of Chemical Ecology

, Volume 21, Issue 8, pp 1191–1215 | Cite as

Mammalian exocrine secretions: IX. Constituents of preorbital secretion of oribi,Ourebia, ourebi

  • W. -P. Mo
  • B. V. Burger
  • M. LeRoux
  • H. S. C. Spies


Using gas chromatography-mass spectrometry in conjunction with ancillary techniques such as chemical ionization with different reactant gases, determination of the position of double bonds by means of dimethyl disulfide derivatization, and finally gas chromatographic and mass spectrometric comparison with authentic synthetic material, 75 constituents were identified in the preorbital secretion of the male oribi,Ourebia ourebi. The secretion contains compounds with long-chain, unbranched structures similar to those found in many other preorbital secretions but with a finite volatility range, in contrast to the seemingly endlessly increasing chain lengths typical of other preorbital secretions.

Key Words

Ourebia ourebi Bovidae mammalian semiochemicals mammalian pheromones exocrine secretion preorbital secretion dimethyl disulfide derivatization skipped dienes chemical-ionization mass spectrometry NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albone, E.S. 1984. Mammalian Semiochemistry. The Investigation of Chemical Signals between Animals. Wiley-Interscience, Chichester, U.K.Google Scholar
  2. Alexakis, A., andDuffault, J.M. 1988. The hydroallumination ofω-tert-butoxy alkynes. An easy access toω-hydroxyalkenyl ioides. Application to the synthesis of dienic insect pheromones.Tetrahedron Lett. 29:6243–6246.CrossRefGoogle Scholar
  3. Alexakis, A., Gardette, M., andColin, S. 1988. Mild protection and deprotection of alcohols astert-butyl ethers in the field of pheromone synthesis.Tetrahedron Lett. 29:2951–2954.CrossRefGoogle Scholar
  4. Augustine, R.L. 1965. Catalytic Hydrogenation. Marcel Dekker, New York. pp. 69–70.Google Scholar
  5. Bax, A., Freeman, R., andMorris, G. 1981. Correlation of proton chemical shifts by two-dimensional fourier transform NMR.J. Magn. Reson. 42:164–168.Google Scholar
  6. Beynon, J.H., Saunders, R.A., andWilliams, A.E. 1961. The high resolution mass spectra of aliphatic esters.Anal. Chem. 33:221–225.CrossRefGoogle Scholar
  7. Bigalke, R.C. 1974. Wild life on forest land: Problems and prospects.S. Afr. For. J. (89):16–20.Google Scholar
  8. Bowen, R.D., andMaccoll, A. 1984. Low energy, low temperature mass spectra. 2. Low energy, low temperature mass spectra of some small saturated alcohols and ethers.Org. Mass Spectrom. 19:379–384.CrossRefGoogle Scholar
  9. Breitmaier, E., Haas, G., andVoelter, W. 1979. Atlas of Carbon-13 NMR Data, Vol. 1. Heyden & Son, London. Compounds 36–105.Google Scholar
  10. Brown, R.A., Young, W.S., andNicolaides, N. 1954. Analysis of high molecular weight alcohols by the mass spectrometer. The wax alcohols of human hair fat.Anal. Chem. 26:1653–1654.CrossRefGoogle Scholar
  11. Buser, H.-R., Arn, H., Guerin, P., andRauscher, S. 1983. Determination of double bond position in monounsaturated acetates by mass spectrometry of dimethyl disulfide adducts.Anal. Chem. 55:818–822.CrossRefGoogle Scholar
  12. Carlson, D.A., Roan, C.-S., Yost, R.A., andHector, J. 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry.Anal. Chem. 61:1564–1571.CrossRefGoogle Scholar
  13. Dolejs, L., Beran, P., andHradec, J. 1968. Mass spectra of branched long-chain aliphatic alcohols.Org. Mass Spectrom. 1:563–566.CrossRefGoogle Scholar
  14. Eisenberg, J.F., andKleiman, D.G. 1972. Olfactory communication in mammals.Annu. Rev. Ecol. Syst. 3:1–31.CrossRefGoogle Scholar
  15. Friedel, R.A., Shultz, J.L., andSharkey, A.G., Jr. 1956. Mass spectra of alcohols.Anal. Chem. 28:926–934.CrossRefGoogle Scholar
  16. Ganem, B., andSmall, V.R., Jr. 1974. Ferric chloride in acetic anhydride. A mild and versatile reagent for the cleavage of ethers.J. Org. Chem. 39:3728–3730.CrossRefGoogle Scholar
  17. Gross, R.S., andWatt, D.S. 1987. A Lewis acid-catalyzed procedure for the conversion of 2-methoxyethoxymethyl ethers to carboxylic esters.Synth. Commun. 17:1749–1760.Google Scholar
  18. Hunt, D.F., Harvey, T.M., Brumley, W.C., Ryan, J.F., III, andRussell, J.W. 1982. Nitric oxide chemical ionization mass spectrometry of alcohols.Anal. Chem. 54:492–496.Google Scholar
  19. Jung, M.E., andLyster, M.A. 1977. Quantitative dealkylation of alkyl ethers via treatment with trimethylsilyl iodide. A new method for ether hydrolysis.J. Org. Chem. 42:3761–3764.CrossRefGoogle Scholar
  20. Kenmuir, D., andWilliams, R. 1975. Wild Mammals. Longman Rhodesia, Salisbury, Rhodesia. pp. 96–97.Google Scholar
  21. Kingdon, J. 1982. East African Mammals. An Altas of Evolution in Africa, Vol. III, Part C (Bovids). Academic Press, London, pp. 217–229.Google Scholar
  22. Le Roux, M. 1980. Reuksintuiglike Kommunikasie: Chemiese Samestelling van Eksokriene Klierafskeidings van die Bontebok (Damaliscus dorcas dorcas), Springbok (Antidorcas marsupialis), en Grysbok (Raphicerus melanotis). PhD thesis. Stellenbosch University. p. 130.Google Scholar
  23. Malosse, C., andEinhorn, J. 1990. Nitric oxide chemical ionization mass spectrometry of long-chain unsaturated alcohols, acetates, and aldehydes.Anal. Chem. 62:287–293.CrossRefGoogle Scholar
  24. Müller-Schwarze, D. 1971. Pheromones in black-tailed deer (Odocoileus hemionus columbianus).Anim. Behav. 19:141–152.PubMedGoogle Scholar
  25. Müller-Schwarze, D., andMüller-Schwarze, C. 1975. Subspecies specificity of response to a mammalian social odor.J. Chem. Ecol. 1:125–131.CrossRefGoogle Scholar
  26. Novellie, P.A., Manson, J., andBigalke, R.C. 1984. Behavioral ecology and communication in the Cape grysbok.S. Afr. J. Zool. 19:22–30.Google Scholar
  27. Osbond, J.M., Philpott, P.G., andWickens, J.C. 1961. Essential fatty acids. Part I. Synthesis of linoleic,γ-linolenic, arachidonic, and docosa-4,7,10,13,16-pentaenoic acid.J. Chem. Soc. 1961:2779–2787.CrossRefGoogle Scholar
  28. Reynolds, W.F., McLean, S., Perpick-Dumont, M., andEniquez, R.G. 1989. Improved13C-1H shift correlation spectra for indirectly bonded carbons and hydrogens: The FLOCK sequence.Magn. Reson. Chem. 27:162–169.CrossRefGoogle Scholar
  29. Schaffer, J. 1940. Die Hautdrüsenorgane der Säugetiere. Urban und Schwarzenberg, Berlin, cited in Eisenberg, J.F., and Kleiman, D.G. 1972. Olfactory communication in mammals.Annu. Rev. Ecol. Syst. 3:1–31.Google Scholar
  30. Sharkey, A.G., Jr., Shultz, J.L., andFriedel, R.A. 1959. Mass spectra of esters. Formation of rearrangement ions.Anal. Chem. 31:87–93.CrossRefGoogle Scholar
  31. Singh, R.P., Subbarao, H.N., andDev, S. 1979. Organic reactions in a solid matrix-V. Silicagel supported chromic acid reagents.Tetrahedron 35:1789–1793.CrossRefGoogle Scholar
  32. Smithers, R.H.N. 1986. Land Mammals of Southern Africa. A Field Guide. Illustration by C. Abbott. Macmillan South Africa Ltd., Johannesburg. pp. 174–176.Google Scholar
  33. Taylor, W.R., andStrong, F.M. 1950. synthesis of unsaturated fatty acids.J. Am. Chem. Soc. 72:4263–4265.CrossRefGoogle Scholar
  34. Tonini, C., Cassani, G., Massardo, P., Guglielmetti, G., andCastellari, P.L. 1986. Study of female sex pheromone of leopard moth,Zeuzera pyrina L. Isolation and identification of three components.J. Chem. Ecol. 12:1545–1558.CrossRefGoogle Scholar
  35. Vaughn, T.H., Hennion, G.F., Vogt, R.R., andNieuwland, J.A. 1937. The preparation and alkylation of metal acetylides in liquid ammonia.J. Org. Chem. 2:1–22.CrossRefGoogle Scholar
  36. Vincenti, M., Guglielmetti, G., Cassani, G., andTonini, C. 1987. Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives.Anal. Chem. 59:694–699.CrossRefGoogle Scholar
  37. Walker, C. 1982. Signs of the Wild. Field Guide to the Tracks and Signs of the Mammals of Southern Africa. Sable Publishers Ltd., Sloane Park, South Africa. p. 163.Google Scholar
  38. Wenkert, E., Buckwalter, B.L., Burfitt, I.R., Gasic, M.J., Gottlieb, H.E., Hagaman, E.W., Schell, F.M., andWovkulich, P.M. 1976. Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances, pp. 81–121,in G.C. Levy (ed.). Topics in Carbon-13 NMR Spectroscopy, Vol. 2. John Wiley & Sons, New York.Google Scholar
  39. Wilde, J.A., andBolton, P.H. 1984. Suppression of homonuclear coupling in heteronuclear two-dimensional spectroscopy.J. Magn. Reson. 59:343–346.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • W. -P. Mo
    • 1
  • B. V. Burger
    • 1
  • M. LeRoux
    • 1
  • H. S. C. Spies
    • 1
  1. 1.Laboratory for Ecological Chemistry Department of ChemistryUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations