Advertisement

Hyperfine Interactions

, Volume 101, Issue 1, pp 623–632 | Cite as

Experiments with low-energy muons

  • F. J. Hartmann
  • H. Daniel
  • Chr Maierl
  • M. Mühlbauer
  • W. Schott
  • P. Wojciechowski
  • P. Hauser
  • C. Petitjean
  • D. Taqqu
  • F. Kottmann
  • V. E. Markushin
Article

Abstract

Two experiments with low-energy muons are described: the determination of the stopping power of C, Si, Ti and Au for muons at energies down to 2 keV and the measurement of the diffusion times for pµ and dµ atoms in low-pressure (0.25–12 hPa) hydrogen gas. A pronounced Barkas effect was found for muons at the Bragg peak (about 10 keV): the stopping power for µ in C, e.g., is about 30% lower than that for µ+. The mean kinetic energy of pµ atoms at the end of the cascade in 1 hPa hydrogen gas was determined to be (2.6 ± 0.6) eV (preliminary value).

Keywords

Hydrogen Thin Film Kinetic Energy Diffusion Time Bragg Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Abela et al. Muon Cat. Fusion 5/6 (1990/91) 459.Google Scholar
  2. [2]
    H. Bethe, Ann. Phys. (Leipzig) 5 (1930) 325.Google Scholar
  3. [3]
    F. Bloch, Z. Phys. 81 (1933) 363.Google Scholar
  4. [4]
    W.H. Barkas, W. Birnbaum and F.M. Smith, Phys. Rev. 101 (1956) 778.Google Scholar
  5. [5]
    W.H. Barkas, J.N. Dyer and H.H. Heckman, Phys. Rev. Lett. 11 (1963) 26.Google Scholar
  6. [6]
    W. Wilhelm, H. Daniel and F.J. Hartmann, Phys. Lett. 98B (1981) 33.Google Scholar
  7. [7]
    P. Hauser et al.,Muonic Atoms and Molecules, Monte Veritá (Birkhäuser, Basel 1993) p. 235.Google Scholar
  8. [8]
    R. Medenwaldt et al., Phys. Lett. 155A (1991) 155.Google Scholar
  9. [9]
    R. Medenwaldt et al., Nucl. Instr. Methods B 58 (1991) 1.Google Scholar
  10. [10]
    G. Gabrielse et al., Phys. Rev. A 40 (1989) 481.Google Scholar
  11. [11]
    A. Adamo et al., (OBELEX Collaboration), Phys. Rev. A 47 (1993) 4517.Google Scholar
  12. [12]
    W. Schott et al., Z. Phys. A 346 (1993) 81.Google Scholar
  13. [13]
    H. Daniel et al., Phys. Lett. A 191 (1994) 155.Google Scholar
  14. [14]
    N. Bohr, Philos. Mag. 25 (1913) 10.Google Scholar
  15. [15]
    J.C. Ashley, R.H. Ritchie and W. Brandt, Phys. Rev. B5 (1972) 2393.Google Scholar
  16. [16]
    J.D. Jackson and R.L. McCarthy, Phys. Rev. B6 (1972) 4131.Google Scholar
  17. [17]
    S. Shindo and H. Minowa, Phys. Stat. Sol. B 145 (1988) 89.Google Scholar
  18. [18]
    K.W. Hill and E. Merzbacher, Phys. Rev. A9 (1974) 156.Google Scholar
  19. [19]
    P. Sigmund and U. Haagerup, Phys. Rev. A 34 (1986) 892.Google Scholar
  20. [20]
    H.H. Mikkelsen and P. Sigmund, Nucl. Instr. Methods B 27 (1987) 266.Google Scholar
  21. [21]
    H.H. Mikkelsen and P. Sigmund, Phys. Rev. A 40 (1989) 101.Google Scholar
  22. [22]
    H.H. Mikkelsen, H. Esbensen and P. Sigmund, Nucl. Instr. Methods B 48 (1990) 8.Google Scholar
  23. [23]
    H.H. Mikkelsen and H. Flyvberg, Phys. Rev. A 42 (1990) 3962.Google Scholar
  24. [24]
    H.H. Mikkelsen, Nucl. Instr. Methods 58 (1991) 136.Google Scholar
  25. [25]
    J. Lindhard, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 28 (1954) No. 8.Google Scholar
  26. [26]
    J. Lindhard and A. Winther, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 34 (1964) No. 4.Google Scholar
  27. [27]
    C.D. Hu, and E. Zaremba, Phys. Rev. B 37 (1988) 9268.Google Scholar
  28. [28]
    H. Esbensen and P. Sigmund, Ann. Phys. (NY) 201 (1990) 152; Phys. Stat. Sol. B145 (1988) 89.Google Scholar
  29. [29]
    A. Belkacem and P. Sigmund, Nucl. Instr. Methods B 48 (1990) 29.Google Scholar
  30. [30]
    J.C. Ashley, J. Phys. Condens. Matter 3 (1991) 2741.Google Scholar
  31. [31]
    International Commission on Radiation Units and Measurements, Report no. 49 (Bethesda, MD 20814, USA, 1993).Google Scholar
  32. [32]
    P. Wojciechowski, Ph.D. thesis (Technische Universität München, 1995) unpublished.Google Scholar
  33. [33]
    C. Varelas and J.P. Biersack, Nucl. Instr. Methods 79 (1970) 213.Google Scholar
  34. [34]
    H.H. Andersen and J.F. Ziegler,Hydrogen stopping powers and ranges in all elements (Pergamon, New York, 1977).Google Scholar
  35. [35]
    W. Brandt and R. Sizmann, in:Atomic Collisions in Solids, Vol. 1 (Plenum Press, New York, London, 1975) p. 305.Google Scholar
  36. [36]
    J.F. Janni, At. Data Nucl. Data Tables 27 (1982) 147.Google Scholar
  37. [37]
    P.R. Bolton et al., Phys. Rev. Lett. 47 (1981) 1441.Google Scholar
  38. [38]
    J.A. Phillips, Phys. Rev. 97 (1955) 404.Google Scholar
  39. [39]
    G.Ya. Korenman, S.V. Leonova and V.P. Popov, Muon Cat. Fusion 5/6 (1990/91) 49.Google Scholar
  40. [40]
    V.E. Markushin, Phys. Rev. A 50 (1994) 1137.Google Scholar
  41. [41]
    M. Mühlbauer et al., these proceedings (Hyp. Int. 101/102 (1996) 607).Google Scholar
  42. [42]
    J.B. Kraiman et al., Phys. Rev. Letters 63 (1989) 1942.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • F. J. Hartmann
    • 1
  • H. Daniel
    • 1
  • Chr Maierl
    • 1
  • M. Mühlbauer
    • 1
  • W. Schott
    • 1
  • P. Wojciechowski
    • 1
  • P. Hauser
    • 2
  • C. Petitjean
    • 2
  • D. Taqqu
    • 2
  • F. Kottmann
    • 3
  • V. E. Markushin
    • 4
  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Paul Scherrer InstitutVilligen-PSISwitzerland
  3. 3.Eidgenössische Technische HochschuleZürichSwitzerland
  4. 4.Kurchatov Atomic Energy InstituteMoscowRussia

Personalised recommendations