# Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities

Research Papers

Received:

Revised:

- 292 Downloads
- 13 Citations

## Summary

A recent note by Marshall and Olkin (1990), in which the Cauchy-Schwarz and Kantorovich inequalities are considered in matrix versions expressed in terms of the Loewner partial ordering, is extended to cover positive semidefinite matrices in addition to positive definite ones.

### AMS (1980) subject classification

Primary 15A42 Secondary 15A45## Preview

Unable to display preview. Download preview PDF.

### References

- [1]Baksalary, J. K.,
*Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors*. In*Proceedings of the Second International Tampere Conference in Statistics*(Pukkila, T. and Puntanen, S., Eds.). Department of Mathematical Sciences, University of Tampere, Tampere, 1987, pp. 113–142.Google Scholar - [2]Baksalary, J. K. andKala, R.,
*Relationships between some representations of the best linear unbiased estimator in the general Gauss-Markoff model*. SIAM J. Appl. Math.*35*(1978), pp. 515–520.Google Scholar - [3]Baksalary, J. K. andKala, R.,
*Two properties of a nonnegative definite matrix*. Bull. Acad. Polon. Sci. Sér. Sci. Math.*28*(1980), pp. 233–235.Google Scholar - [4]Baksalary, J. K., Kala, R., andKłaczyński, K.,
*The matrix inequality M ⩾ B* MB*. Linear Algebra Appl.*54*(1983), pp. 77–86.Google Scholar - [5]Chipman, J. S.,
*On least squares with insufficient observations*. J. Amer. Statist. Assoc.*59*(1964), pp. 1078–1111.Google Scholar - [6]Chollet, J.,
*On principal submatrices*. Linear and Multilinear Algebra*11*(1982), pp. 283–285.Google Scholar - [7]Cline, R. E. andGreville, T. N. E.,
*An extension of the generalized inverse of a matrix*. SIAM J. Appl. Math.*19*(1970), pp. 682–688.Google Scholar - [8]Gaffke, N. andKrafft, O.,
*Optimum properties of Latin square designs and a matrix inequality*. Math. Operationsforsch. Statist. Ser. Statist.*8*, (1977), pp. 345–350.Google Scholar - [9]Magness, T. A. andMcGuire, J. B.,
*Comparison of least squares and minimum variance estimates of regression parameters*. Ann. Math. Statist.*33*(1962), pp. 462–470.Google Scholar - [10]Marcus, M.,
*A remark on the preceding paper*. Linear and Multilinear Algebra*11*(1982), p. 287.Google Scholar - [11]Marsaglia, G. andStyan, G. P. H.,
*Rank conditions for generalized inverses of partitioned matrices*. Sankhyā Ser. A*36*(1974), pp. 437–442.Google Scholar - [12]Marshall, A. W. andOlkin, I.,
*Reversal of the Lyapunov, Hölder, and Minkowski inequalities and other extensions of the Kantorovich inequality*. J. Math. Anal. Appl.*8*(1964), pp. 503–514.Google Scholar - [13]Marshall, A. W. andOlkin, I.,
*Inequalities: Theory of majorization and its applications*. Academic Press, New York, 1979.Google Scholar - [14]Marshall, A. W. andOlkin, I.,
*Matrix versions of the Cauchy and Kantorovich inequalities*. Aequationes Math.*40*(1990), pp. 89–93.Google Scholar - [15]Rao, C. R.,
*Least squares theory using an estimated dispersion matrix and its application to measurement of signals*. In*Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, Vol. 1 (Le Cam, L. M. and Neyman, J., Eds.). University of California Press, Berkeley, CA, 1967, pp. 355–372.Google Scholar

## Copyright information

© Birkhäuser Verlag 1991