Skip to main content
Log in

Plant-bacteria interactions with special emphasis on the kallar grass association

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Kallar grass is a highly salt-tolerant grass grown as a pioneer plant on alkaline, salt-affected soils in Pakistan. Nitrogen-fixing bacteria and kallar grass were found to be in close association, which was even root-zone specific: rhizoplane and endorhizosphere were colonized by two different populations. Among theAzospirillum isolates originating from the root surface, some were of a new species, now namedA. halopraeferens. To study plant-bacterium interactions, this natural kallar grass association was chosen. The possible role of bacterial chemotaxis and oxygen tolerance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong W 1979 Aeration in higher plants.In Advances in Botanical Research, vol. 7. Ed. HW Woolhouse pp. 226–332. Academic Press, Inc. (London), Ltd., London.

    Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L and Döbereiner J 1986 Characterization ofHerbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 86–93.

    Google Scholar 

  • Barak R, Nur I and Okon Y 1983 Detection of chemotaxis inAzospirillum brasilense. J. Appl. Bacteriol. 54, 399–403.

    Google Scholar 

  • Barak R, Nur I, Okon Y and Henis Y 1982 Aerotactic response inAzospirillum brasilense. J. Bacteriol. 152, 643–649.

    PubMed  Google Scholar 

  • Bashan Y 1986 Migration of the rhizosphere bacteriaAzospirillum brasilense andPseudomonas fluorescens towards wheat roots in the soil. J. Gen. Microbiol. 132, 3407–3414.

    Google Scholar 

  • Bilal R and Malik KA 1987 Isolation and identification of a N2-fixing zoogloea-forming bacterium from Kallar grass histoplane. J. Appl. Bacteriol. 62, 289–294.

    Google Scholar 

  • Bors J, Kloss M, Zelles I and Fenrik I 1982 Nitrogen fixation and nitrogen-fixing microorganisms from the rhizosphere ofDiplachne fusca Linn. (Beauv). J. Gen. Appl. Microbiol. 28, 111–118.

    Google Scholar 

  • Boureau M 1977 Application de la chromatographie en phase gazeuse à l'etude de l'exsudation recinaire du riz. Cah. ORSTOM Ser. Biol. 12, 75–81.

    Google Scholar 

  • Crawford MM 1982 Physiological responses to flooding.In Encyclopedia of Plant Physiology,vol. 12 B. Eds. OL Lange, PS Nobel, CB Osmond and H Ziegler. pp. 453–477. Springer Verlag, Berlin.

    Google Scholar 

  • Currier WW 1985 Response of birdsfoot-trefoil nodulatingRhizobium to lectins and trefoil chemotactin. Can. J. Microbiol. 31, 587–589.

    Google Scholar 

  • Currier WW and Strobel GA 1977 Chemotaxis ofRhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science 196, 434–436.

    Google Scholar 

  • Currier WW and Strobel GA 1981 Characterization and biological activity of trefoil chemotactin. Plant Sci. Lett. 21, 159–165.

    Google Scholar 

  • De Ley J, Cattoir H and Reynaerts A 1970 The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142.

    PubMed  Google Scholar 

  • De Smedt J and De Ley J 1977 Intra- and intergeneric similarities ofAgrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 27, 222–240.

    Google Scholar 

  • Döbereiner J 1961 Nitrogen-fixing bacteria of the genusBeijerinckia Derx in the rhizosphere of sugar cane. Plant and Soil 15, 211–216.

    Google Scholar 

  • Döbereiner J and May JM 1976. Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen-fixing sites.In Proceedings of the First International Symposium on N2 Fixation. Eds. WE Newton and CJ Nymann. pp. 518–537. Washington State University Press, Pullman.

    Google Scholar 

  • Giller KE and Day JM 1985 Nitrogen fixation in the rhizosphere: significance in natural and agricultural systems.In Biological Interactions in Soil. Ed. AH Fitter. pp.127–147. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Haahtela K, Helander I, Numiaho-Lassila E-L and Sundmann V 1983 Morphological and physiological characteristics and lipopolysaccharide composition of N2-fixing (C2H2-reducing) root-associatedPseudomonas sp. Can. J. Microbiol. 29, 874–880.

    PubMed  Google Scholar 

  • Hurek T, Reinhold B, Fendrik I and Niemann E-G 1987a Root-zone-specific oxygen tolerance ofAzospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environ. Microbiol. 53, 163–169.

    Google Scholar 

  • Hurek T, Reinhold B and Niemann E-G 1987b Effect of oxygen on NH +4 -grown continuous cultures ofAzospirillum spp. and diazotrophic rods closely associated with Kallar grass. Can. J. Microbiol. 33, 919–922.

    Google Scholar 

  • Kapulnik Y and Okon Y 1983 Benefits ofAzospirillum inoculation on wheat: Effects on root development, mineral uptake, nitrogen fixation, and crop yield.In Azospirillum II: Genetics Physiology, Ecology. Ed. W Klingmüller pp. 163–170. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Khan MD 1966 ‘Kallar grass’, a suitable grass for saline lands. Agric. Pak. 17, 375.

    Google Scholar 

  • Kloss M, Iwannek K-H, Fendrik I and Niemann E-G 1984 Organic acids in the root exudates ofDiplachne fusca (Linn.) Beauv. Environ. Exp. Bot. 24, 179–188.

    Google Scholar 

  • Lima E, Boddey RM and Döbereiner J 1987 Quantification of biological nitrogen fixation associated with sugar cane using a 15-N aided nitrogen balance. Soil Biol. Biochem. 19, 165–170.

    Google Scholar 

  • Malik KA, Zafar Y and Hussain A 1980 Nitrogenase activity in the rhizosphere of Kallar grass (Diplachne fusca (Linn.) Beauv.) Biologia 26, 107–112.

    Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A and Balandreau J 1986 Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant and Soil 90, 129–139.

    Google Scholar 

  • McClung CR, Patriquin DG and Davis RE 1983aCampylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots ofSpartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33, 605–612.

    Google Scholar 

  • McClung CR, VanBerkum P, Davis RE and Sloger C 1983b Enumeration and localization of N2-fixing bacteria associated with roots ofSpartina alterniflora Loisel. Appl. Environ. Microbiol. 45, 1914–1920.

    Google Scholar 

  • Mellor HY, Genn AR, Arwas R and Dilworth MJ 1987 Symbiotic and competitive properties of motility mutants ofRhizobium trifolii TA1. Arch. Microbiol. 148, 34–39.

    Google Scholar 

  • Morgenstern E and Okon Y 1987 The effect ofAzospirillum brasilense and auxin on root morphology in seedlings ofSorghum bicolor x Sorghum sudanense. Arid Soil Res. Rehab. 1, 115–127.

    Google Scholar 

  • Neyra CA and Hageman RG 1976 Relationship between carbon dioxide, malate, and nitrate accumulation and reduction in corn (Zea mays L.) seedlings. Plant Physiol. 58, 726–730.

    Google Scholar 

  • Nur I, Okon Y and Henis Y 1982 Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase byAzospirillum brasilense Cd grown in continuous culture. J. Gen. Microbiol. 128, 2937–2943.

    Google Scholar 

  • Okon Y 1985Azospirillum as a potenial inoculant for agriculture. Trends Biotechnol. 3, 223–228.

    Google Scholar 

  • Okon Y, Heytler PG and Hardy RWF 1983 N2-fixation byAzospirillum brasilense and its incorporation into hostSetaria italica. Appl. Environ. Microbiol. 46, 694–697.

    Google Scholar 

  • Pilgram WK and Williams FD 1976Survival value of chemotaxis in mixed cultures. Can. J. Microbiol. 22, 1771–1773

    PubMed  Google Scholar 

  • Reinhold B, Hurek T, Baldani I and Döbereiner J 1988 Temperature and salt tolerance ofAzospirillum spp. from salt-affected soils in brazil.In Azospirillum IV: Genetics, Physiology, Ecology. Ed. W.Klingmüller, pp. 234–241. Springer Verlag, Berlin.

    Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1985 Strain-specific chemotaxis ofAzospirillum spp. J. Bacteriol. 162, 190–195.

    PubMed  Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1987a Cross reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of Kallar grass. Appl. Environ. Microbiol. 53, 889–891.

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S and De Ley J 1987bAzospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol. 37, 43–51.

    Google Scholar 

  • Reinhold B, Hurek T, Niemann E-G and Fendrik I 1986 Close association ofAzospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol. 52, 520–526.

    Google Scholar 

  • Sandhu GR, Aslam Z, Salim M, Sattar A, Qureshi RH, Ahmad N and Wyn Jones RG 1981 The effect of salinity on the yield and composition ofDiplachne fusca (Kallar grass). Plant Cell Environ. 4, 177–181.

    Google Scholar 

  • Sandhu GR, and Malik KA 1975 Plant succession — a key to the utilization of saline soils Nucleus 12, 35–38.

    Google Scholar 

  • Saxena B, Modi M and Modi VV 1986 Isolation and characterization of siderophores fromAzospirillum lipoferum D-2. J. Gen. Microbiol, 132, 2219–2224.

    Google Scholar 

  • Vancura V 1964 Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and Soil 21, 231–248.

    Google Scholar 

  • Watanabe I and Barraquio WL 1979 Low levels of fixed nitrogen required for isolation of free-living N2-fixing organisms from rice roots. Nature (London) 277, 565–566.

    Google Scholar 

  • Zafar Y, Ashraf M and Malik KA 1986 Nitrogen fixation associated with roots of Kallar grass (Leptochloa fusca L. Kunth). Plant Soil 90, 93–105.

    Google Scholar 

  • Zafar Y, Malik KA and Niemann E-G 1987 Studies on N2-fixing bacteria associated with the salt-tolerant grass,Leptochloa fusca (L.) Kunth. MIRCEN J. 3, 45–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhold, B., Hurek, T. & Fendrik, I. Plant-bacteria interactions with special emphasis on the kallar grass association. Plant Soil 110, 249–257 (1988). https://doi.org/10.1007/BF02226805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02226805

Key words

Navigation