Deutsche Hydrografische Zeitschrift

, Volume 34, Issue 6, pp 273–283 | Cite as

Numerical simulation of tides in the World Ocean: 1. Parameterization of the shelf effects

  • Vadim Yu. Gotlib
  • Boris A. Kagan
Article

Summary

Two methods of shelf parameterization are proposed: one of the local and the other of the integral type. The paper gives the results of testing these methods using a calculation of tides according to Webb's [1976] and von Trepka's [1967] model oceans as an example. The proposed methods of shelf effect parameterization provide a quite acceptable accuracy of simulation of semi-diurnal tides in the open ocean, but in some cases they underestimate the tidal energy dissipation on the shelf. The latter circumstance is caused by the ignored effect of edge waves with a longitudinal scale of the order of the shelf width.

Keywords

Energy Dissipation Model Ocean World Ocean Open Ocean Effect Parameterization 

List of symbols

an±

amplitudinal multipliers for reflected and incident Kelvin and Poincaré waves (n=0 corresponds to Kelvin waves)

a

analytical function of the coefficient of bottom frictionr

A

shelf length

b

analytical function of the coefficient of bottom frictionr

C

constant defined by the ratio of amplitudes and phase shift betweenu andv

Em

maximum tidal energy

\( - \dot E\)

rate of tidal energy dissipation

f

Coriolis parameter

Fn±(x, y)

characteristics of Kelvin and Poincaré waves in the Webb channel

g

gravity

h

depth on the shelf

h0

characteristic depth on the shelf

H

depth in the open ocean

L

shelf width

Q

quality factor of an oscillatory system

r

linearized coefficient of bottom friction

r1

coefficient of bottom friction in the quadratic resistance law

u, v

components of the vertical-mean velocity

x, y

cartesian coordinates

α

ratio of the shelf width to characteristic scale of wave on the shelf

σ

frequency

σ0

eigenfrequency

ɛ

ratio of the shelf width to characteristic wave scale in the open ocean

ζ

tidal elevation

ρ

mean density of sea water

χ

parameter uniquely connected withr1

Numerisches Modell der Gezeiten im Weltozean: 1. Parametrisierung von Schelfeffekten

Zusammenfassung

Es werden zwei Methoden der Parametrisierung von Schelfeffekten vorgeschlagen: eine vom lokalen Typ, die andere vom integralen. Die Versuchsergebnisse dieser Typen werden am Beispiel der Gezeitenberechnung nach den Ozeanmodellen von Webb [1976] und von von Trepka [1967] vorgelegt. Es ist gezeigt, daß die hier vorgeschlagenen Parametrisierungsmethoden von Schelfeffekten eine vollkommen ausreichende Genauigkeit bei der Wiedergabe der halbtägigen Gezeiten im freien Ozean bieten, jedoch in einigen Fällen wird die Dissipation der Gezeitenenergie am Schelf unterschätzt. Dieses wird durch den vernachlässigten Einfluß der Randwellen mit einem Längsmaßstab von der Größenordnung der Schelfbreite hervorgerufen.

Simulation numérique de marées dans l'océan mondial: 1. Paramétrisation des effets du plateau

Résumé

On propose deux méthodes de paramétrisation du plateau: l'une de type local, l'autre de type intégral. Cet article décrit les résultats des essais de ces deux méthodes dans un calcul de marées à l'aide des modèles d'océan de Webb [1976] et de von Trepka [1967]. Les méthodes de paramétrisation des effets du plateau proposées ici fournissent une précision de simulation tout à fait suffisante pour la marée semi-diurne océanique, mais, dans certains cas, elles sous-estiment la dissipation d'énergie sur le plateau. Ceci est dû au fait qu'elles négligent l'influence des ondes de bord dont la longueur d'onde est de l'ordre de la largeur du plateau.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accad, Y. and C. L. Pekeris, 1978: Solution of the tidal equations for the M2 and S2 tides in the world ocean from a knowledge of the tidal potential alone. Philos. Trans. r. Soc. (A)290, No. 1368, S. 235–266.Google Scholar
  2. Baines, P. G., 1973: The generation of internal tides by flat bump topography. Deep-Sea Res.20, 179–205.Google Scholar
  3. Estes, R. H., 1977: A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects. Final report. Techn. Rep. Business Technol. Syst. TR-77-41, p. 60.Google Scholar
  4. Gallagher, B. S. and W. H. Munk, 1971: Tides in shallow water: spectroscopy. Tellus.23, 346–363.Google Scholar
  5. Garrett, C. J. R., 1972: Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature.238, 441–443.CrossRefGoogle Scholar
  6. Gordeev, R.G., B. A. Kagan and V. Ya. Rivkind, 1973: A numerical solution of dynamic equations for tides in the World Ocean. Dokl. Akad. Nauk SSSR.209, 340–343.Google Scholar
  7. Gordeev, R. G., B. A. Kagan and E. V. Polyakov, 1976: Numerical integration of dynamic equations for tides in the World Ocean allowing for the effects of loading and self-attraction. Dokl. Akad. Nauk SSSR.228, 817–820.Google Scholar
  8. Gotlib, V. Yu. and B. A. Kagan, 1979: On parameterization of the shelf effects in modelling the ocean tides. Izv. Akad. Nauk SSSR. Fiz. Atmosf. Okeana15, 425–435.Google Scholar
  9. Gotlib, V. Yu. and B. A. Kagan, 1980: Simulation of tides in the World Ocean with allowance for the shelf effects. Dokl. Akad. Nauk SSSR.251, 710–713.Google Scholar
  10. Hendershott, M. C., 1977: Numerical models of ocean tides. In: The Sea. Ideas and observations on progress in the study of the seas. Ed. E. D. Goldberg. Pp. 47–95.Google Scholar
  11. Marčuk, G. I. and B. A. Kagan, 1977: Ocean tides. Leningrad: Gidrometeoizdat. 295 S.Google Scholar
  12. Munk, W. H. and G. J. F. McDonald, 1960: The rotation of the Earth. Cambridge: Univ. Press. XIII, 323 S.Google Scholar
  13. Pekeris, C. L. and Y. Accad, 1969: Solution of Laplace's equations for the M2 tide in the World Ocean. Philos. Trans. r. Soc. (A)265, 413–436.Google Scholar
  14. Platzman, G. W., 1971: Ocean tides and related waves. In: Mathematical Problems in the Geophysical Sciences. Lect. Appl. Math.14, 239–291.Google Scholar
  15. Trepka, L. von, 1967: Anwendung des hydrodynamisch-numerischen Verfahrens zur Ermittlung des Schelfeinflusses auf die Gezeiten in Modellkanälen und Modellozeanen. Mitt. Inst. Meeresk. Univ. Hamburg, Nr. 9, 65 S.Google Scholar
  16. Webb, D. J., 1976: A model of continental shelf resonances. Deep-Sea Res.23, 1–15.Google Scholar
  17. Zahel, W., 1977: A global hydrodynamic-numerical 10-model of the ocean tides: the oscillation systems of the M2-tide and its distribution of energy dissipation. Ann. Geophys.33, 31–40.Google Scholar

Copyright information

© Deutsches Hydrographisches Institut 1981

Authors and Affiliations

  • Vadim Yu. Gotlib
    • 1
  • Boris A. Kagan
    • 1
  1. 1.Leningrad Branch, P. P. Shirshov Institute of OceanologyAcademy of Sciences USSRLeningradUSSR

Personalised recommendations