Deutsche Hydrografische Zeitschrift

, Volume 45, Issue 4, pp 219–254 | Cite as

A study of the Equatorial Atlantic currents using historical moored data

  • Alexander B. Polonsky
  • Evgeniy G. Nikolaenko
  • Sekou Konate
  • Toumany Camara
Article

Summary

Historical data from about 500 surface moorings are used to describe the mean and half-yearly averaged circulation of the Equatorial Atlantic. The emphasis is on the kinematic structure and transports of equatorial countercurrents and undercurrents. West of 30° W they form a single eastward flow between 5° S and 10° N penetrating to the depth of 1500 m. The total transport of this flow is more than 90 Sv. There are three subsurface cores in this eastward flow located approximately at 5° S, at the Equator and at 5° N. The typical velocities are 20, 50 and 30 cm/s respectively. The typical velocity in the Equatorial Undercurrent (EU) deep core is about 20 cm/s. East of 30° W the single eastward flow is separated by two branches of the South Equatorial Current (SEC) flowing westward along 3 to 4° S and 2 to 4° N. This westward current, with maximum velocities of about 30 to 40 cm/s in the subsurface layers, penetrates to a depth of 1000 m. Proceeding to the east, the cores of the North Equatorial Countercurrent (NECC), EU and the South Equatorial Countercurrent (SECC) rise toward the surface and become wider and weaker. Their total transport decreases to about 75 Sv at 22.5° to 25° W. The EU is the strongest of these currents. The volume transport of the NECC is reduced from 30 Sv in the western part to 20 Sv in the eastern part of the Equatorial Atlantic (±10 to 15 per cent).

The SECC and EU are intensified throughout the Equatorial Atlantic during the second half of the year. Their cores deepen and widen at this time and their transports increase. The EU transport doubles while the NECC one rises by about 50 per cent in the Central Equatorial Atlantic. Current shear in upper layers at least doubles.

The circulation patterns of the N-W and N-E parts of the Equatorial Atlantic are characterized by two principal common features: 1) an absence of significant meridional mean gradient transport which can play an essential role in the total mass and heat exchange between equatorial and extraequatorial regions; 2) the occurence of quasisteady intensive eddies. The main reasons for these features are discussed. The principal features of the current field and transport pattern are analyzed. The mean northward mass and heat transports in the upper 300 m layer at 10° N are estimated with at least 50 per cent error as 27 Sv and 2 PW, respectively.

Eine Untersuchung der äquatorialen atlantischen Ströme auf der Grundlage von Daten historischer Verankerungen

Zusammenfassung

Es werden historische Daten von etwa 500 Oberflächenverankerungen benutzt um die mittlere und halbjährliche gemittelte Zirkulation des äquatorialen Atlantiks zu beschreiben. Schwerpunkt ist die Untersuchung der kinematischen Struktur und des Transports der äquatorialen Gegenströme und Unterströme. Westlich von 30° W bilden sie eine einzelne ostwärts gerichtete Strömung zwischen 5° S und 10° N, die bis in eine Tiefe von 1500 m hinabreicht. Der Gesamttransport dieser Strömung ist größer als 90 Sv. Unter der Oberfläche gibt es in dieser ostwärts gerichteten Strömung drei Kerne die bei 5° S, am Äquator und bei 5° N liegen. Die typischen Geschwindigkeiten betragen 20, 50 und 30 cm/s. Die typische Geschwindigkeit des Tiefenkerns des äquatorialen Unterstroms (EU) liegt bei 20 cm/s. Östlich von 30° W ist der einfache ostwärts gerichtete Strom in zwei Zweige des Südäquatorialstroms (SEC) geteilt, die zwischen 3 und 4° S und 2 und 4° N westwärts strömen. Dieser Weststrom, mit Maximalgeschwindigkeiten von 30 bis 40 cm/s unterhalb der Oberflächenschicht, reicht bis in eine Tiefe von 1000 m. Die ostwärts strömenden Kerne von nordäquatorialem Gegenstrom (NECC), EU und südäquatorialem Gegenstrom (SECC) steigen zur Oberläche auf, dehnen sich aus und werden schwächer. Der Gesamttransport nimmt auf etwa 75 Sv zwischen 22,5 und 25° W ab. Der EU ist der stärkste dieser Ströme. Der Volumentransport des NECC nimmt von 30 SV im westlichen auf 20 Sv im östlichen Teil des äquatorialen Atlantiks ab (±10–15%).

SECC und EU werden im äquatorialen Atlantik während der zweiten Jahreshälfte verstärkt. In dieser Zeit sinken ihre Kerne ab und weiten sich aus. Auch ihr Transport nimmt zu. Im zentralen äquatorialen Atlantik verdoppelt sich der Transport des EU und der des NECC nimmt um 50% zu. Die Stromscherung in den oberen Schichten verstärkt sich mindestens auf das Doppelte.

Die Zirkulationsmuster der N-W und N-E Teile des äquatorialen Atlantiks werden durch zwei generelle Merkmale charakterisiert: 1) das Fehlen eines deutlichen mittleren meridionalen Gradienttransports, der eine wesentliche Rolle im gesamten Massen- und Wärmeaustausch zwischen äquatorialen und außeräquatorialen Gebieten spielt; 2) das Auftreten von quasi-stetigen ausgeprägten Eddies. Die Hauptgründe für diese Merkmale werden diskutiert. Die Hauptmerkmale des Strömungsfeldes und des Transportmusters werden analysiert. Die mittleren nordwärts gerichteten Massen- und Wärmetransporte in den oberen 300 m bei 10° N werden mit einer Fehlerwahrscheinlichkeit von 50% mit 27 Sv bzw. 2 PW bestimmt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artamonov, Yu. V. and A. B. Polonsky, 1989: Seasonal variability of the hydrophysical fields in the tropical Atlantic. Parts 1 and 2. Coll. pap. “Trop. Atlantic Study”, Sevastopol, 7–60, (in Russian).Google Scholar
  2. Baev, S. A., N. P. Bulgakov, L. I. Ivanov, and A. S. Kukushkin, 1987: Ocean circulation in the N-W Tropical Atlantic and its variability. Marine Hydrophys. J.4, 54–59 (in Russian).Google Scholar
  3. Baev, S. A. and A. B. Polonsky, 1986: Drift Meridional Mass and Heat Transports in the Tropical and Subtropical Atlantic Ocean. Marine Hydrophys. J.5, 46–51 (in Russian).Google Scholar
  4. Baev, S. A. and A. B. Polonsky, 1991: Seasonal variability of the NECC and NEC in the tropical Atlantic. Oceanology,31, 217–222 (in Russian).Google Scholar
  5. Belevich, R. R., N. P. Bulgakov, A. P. Polonsky, and Yu. I. Popov, 1985: Variability of the hydrophysical fields in the Equatorial Atlantic Ocean. GOIN Proceedings,175, 60–85, (in Russian).Google Scholar
  6. Belevich, R. R., I. M. Martynovich, and N. A. Arnaut, 1979: Seasonal variability of the Tropical Atlantic current zonal transports. GOIN Proceedings,150, 3–11, (in Russian).Google Scholar
  7. Belevich, R. R., I. M. Martynovich, and A. Ya. Omel'chenko, 1984: Dynamics of the western boundary current in the Tropical Atlantic. GOIN Proceedings,175, 47–54, (in Russian).Google Scholar
  8. Bruce, J. G., and J. L. Kerling, 1984: Near equatorial eddies in the North Atlantic. Geophys. Res. Lett.,11, 779–782.Google Scholar
  9. Bryan, K., 1982: Poleward Heat Transport by the Ocean: Observation and Models. Ann. Rev, Earth Planet Sci.,10, 15–38.Google Scholar
  10. Bubnov, V. A., V. M. Vasilenko, and L. N. Krivelevich, 1978: Space-time variability of the Tropical Atlantic mesoscale currents. Coll. pap. “Open Atlantic ocean research”, Moscow: I.O. A.S. U.S.S.R. press, 6–39, (in Russian).Google Scholar
  11. Bubnov, V. A., S. E. Navrotskay, 1985: Dynamic topography and surface geostrophic current variability in the central Tropical Atlantic, Oceanology,25, 395–402, (in Russian).Google Scholar
  12. Bubnov, V. A., and V. D. Yegorikhin, 1977: Investigation of the large scale current structure in the tropical Atlantic Ocean along 23° 30′ W. Oceanology,17, 631–635, (in Russian).Google Scholar
  13. Bulgakov, N. P., A. B. Polonsky, V. P. Nikiforova, 1983: Seasonal variability of the meridional mass and heat transports in the Equatorial Atlantic Ocean. —In: Theory of dynamical processes in the ocean. Sevastopol: MHI press, 16–23 (in Russian).Google Scholar
  14. Bulgakov, N. P., and A. B. Polonsky, 1985: The main hydrophysical fields of the Tropical Atlantic and their variability. Reprint. Sevastopol: MHI press, (in Russian).Google Scholar
  15. Burkov, V. A., 1980: General circulation of the ocean. Leningrad: Hydrometeoizdat, (in Russian).Google Scholar
  16. Carton, J. A., and J. M. Yoo, 1987: Determining Seasonal Heat Transport in the Atlantic Ocean. Tropical Ocean-Atm. Newslett.,41, 15–16.Google Scholar
  17. Cochrane, J. D., F. J. Kelly, and C. R. Olling, 1979: Subthermocline countercurrents in the western equatorial Atlantic Ocean. J. Phys. Oceanogr.9, 724–738.Google Scholar
  18. Demin, Yu. L., and A. S. Sarkisyan, 1977: Calculation of equatorial currents. J. Marine Res.35, 339–356.Google Scholar
  19. Dunetsh, A. A., V. I. Klimok, A. B. Polonsky, 1991: Mass and Heat Balances in the Equatorial Atlantic. Marine Hydrophys. J.1, 52–58 (in Russian).Google Scholar
  20. Didden, N., and F. Schott, 1992: Seasonal Variations in the Western Tropical Atlantic: Surface Circulation From Geosat Altimetry and WOCE Model Results. J. Geophys. Res.,97, 3529–3541.Google Scholar
  21. Efimov, V. V., A. S. Knyaz'kov, and A. B. Polonsky, 1987: Features of barotropic circulation resulted from large-scale zonal wind field. Marine Hydrophys. J.1, 39–45 (in Russian).Google Scholar
  22. Efimov, V. V., and A. B. Polonsky, 1987: The N-W Equatorial Atlantic Circulation and Meridional Heat Flux. A. S. U. S. S. R. Report,293, 1231–1234 (in Russian).Google Scholar
  23. Flagg, Ch. N., R. L. Gordon, and Sc. McDowell, 1986: Hydrographic and Current Observations on the Continental Slope and Shelf of the Western Equatorial Atlantic. J. Phys. Oceanogr.,16, 1412–1429.Google Scholar
  24. Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Leningrad: Hydrometeoizdat, (in Russian).Google Scholar
  25. Garzoli, S. L., 1987: Forced Oscillations on the Equatorial Atlantic Basin During the seasonal Response of the Equatorial Atlantic Program (1983–1984). J. Geophys. Res.,92, 5089–5100.Google Scholar
  26. Garzoli, S. L., and E. J. Katz, 1983: The Forced Annual Reversal of the Atlantic North Equatorial Countercurrent. J. Phys. Oceanogr.,13, 2082–2090.Google Scholar
  27. Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res.,91, 5037–5046.Google Scholar
  28. Hallock, Z., 1980: On wind-excited equatorially trapped waves in the presence of mean current. Deep-Sea Res.,26, GATE supp. 2, 261–284.Google Scholar
  29. Halpern, D., 1977: Review of Intercomparisons of moored current measurements Oceans '77 Conference Record. Los Angeles. Bonaventure, October 17–19, 2, 46D-1-46D-6.Google Scholar
  30. Hastenrath, S., 1980: Heat budget of tropical ocean and atmosphere. J. Phys. Oceanogr.,10, 159–170.Google Scholar
  31. Hastenrath, S., and J. Merle, 1986: The annual march of heat storage and export in the tropical Atlantic Ocean. J. Phys. Oceanogr.,16, 694–708.Google Scholar
  32. Hellermann, S., and M. Rosenstein, 1983: Normal monthly windstress over the world ocean with error estimates. J. Phys. Oceanogr.,13, 1093–1104.Google Scholar
  33. Hénin, C., and P. Hisard, 1987: The North Equatorial Countercurrent Observed During the Programme FOCAL in the Atlantic Ocean, July 1982 to August 1984. J. Geophys. Res.,92, 3751–3758.Google Scholar
  34. Hisard, P., and C. Hénin, 1987: Response of the Equatorial Atlantic Ocean to the 1983–1984 Wind From the Programme FOCAL Cruise Data Set. J. Geophys. Res.,92, 3759–3768.Google Scholar
  35. Kagan, B. A., and I. S. Tsankova, 1987: Time-Space Variability of Meridional Heat Transport in the World Ocean. Met. and Hydr.,4, 66–71, (in Russian).Google Scholar
  36. Karnauchenko, N. N., V. A. Gaysky, and A. B. Polonsky, 1986: Tropical Atlantic Ocean Study. Oceanology,26, 343–345, (in Russian).Google Scholar
  37. Katz, E. J., 1981: Dynamic topography of the sea surface in the equatorial Atlantic. J. Marine Res.,39, 53–63.Google Scholar
  38. Khanaichenko, N. K., 1974: Equatorial undercurrents and countercurrents in the ocean. Leningrad: Hydrometeoizdat, (in Russian).Google Scholar
  39. Khlystov, N. Z., 1976: Dynamics and Structure of the Tropical Atlantic waters. Kiev: Naukova Dumka, (in Russian).Google Scholar
  40. Kochergin, V. P., V. I. Klimok, and B. Yu. Grishyakov, 1986: Numerical simulation of equatorial current system. Met. and Hydr.,2, 54–61, (in Russian).Google Scholar
  41. Kolesnikov, A. G., (Ed.), 1966: Lomonosov Current. Kiev: Naukova Dumka, (in Russian).Google Scholar
  42. Korotaev, G. K., E. N. Mikhailova, and N. B. Shapiro, 1986: Theory of equatorial undercurrents and countercurrents in the World Ocean. Kiev: Naukova Dumka, (in Russian).Google Scholar
  43. Kosnyrev, V. K., 1985: Eddy structure of the hydrophysical fields and their interconnection with the heat transport in the Tropical energetic active zone of the Atlantic Ocean. Marine Hydrophys. J.,2, 3–8, (in Russian).Google Scholar
  44. Krovotyntsev, V. A., E. G. Nikolaenko, A. B. Polonsky, and V. M. Shein, 1989: The ITCZ evolution in 1985–87's. Earth Research from Space,3, 19–28, (in Russian).Google Scholar
  45. Lass, H. U., and E. Hagen, 1980: Seasonal variation of the Atlantic Equatorial Undercurrent at 30° W. Gerlands Beit. Geophys.,89, 1–14.Google Scholar
  46. Legeckis, R., and G. Reverdin, 1987: Long Waves in the Equatorial Atlantic Ocean During 1983. J. Geophys. Res.,92, 2835–2842.Google Scholar
  47. L'vov, V. V., and A. B. Polonsky, 1985: A structure of the North Equatorial Countercurrent in the N-W Tropical Atlantic. Marine Hydrophys. J.5, 58–64, (in Russian).Google Scholar
  48. Mazeika, P. A., 1973: Circulation and water mass east of the Lesser Antilles. D. Hydr. Z.26, 49–73.Google Scholar
  49. Meehl, G. A., W. M. Washington, and A. J. Semter, 1982: Experiments with a global ocean model driven by observed atmospheric forcing. J. Phys. Oceanogr.,12, 301–312.Google Scholar
  50. Merle, J., 1978: Atlas Hydrologique Saisonnier de L'Ocean Atlantic Intertropical, Paris: Travaux et documents de l'ORSTOM, 82.Google Scholar
  51. Merle, J., 1980: Seasonal heat budget in the euqatorial Atlantic Ocean. J. Phys. Oceanogr.,10, 464–469.Google Scholar
  52. Merle, J., and S. Arnault, 1985: Seasonal variability of the surface dynamic topography in the Tropical Atlantic Ocean. J. Marine Res.,43, 267–288.Google Scholar
  53. Metcalf, W. G., and M. C. Stalcup, 1967: Origin of the Atlantic Equatorial Undercurrent. J. Geophys. Res.,72, 4959–4975.Google Scholar
  54. Mittelstaedt, E., 1983: The upwelling area of N-W Africa. A Description of phenomena related to coastal upwelling. Prog. Ocean.,17, 307–331.Google Scholar
  55. Monin, A. S., (Ed.), 1982: Variability of the ocean and atmosphere in the Equatorial Atlantic. Moscow: Science Press, (in Russian).Google Scholar
  56. Philander, S. G. H., 1976: Instability of zonal equatorial currents. J. Geophys. Res.,81, 3725–3735.Google Scholar
  57. Philander, S. G. H., 1976: Instability of zonal equatorial currents, 2. J. Geophys. Res.,83, 3679–3682.Google Scholar
  58. Philander, S. G. H., H. W. Hurlin, and R. C. Pacanowski, 1986: Properties of long Equatorial Waves in Models of the Seasonal Cycle in the Tropical Atlantic and Pacific Oceans. J. Geophys. Res.,91, 14, 207–14, 211.Google Scholar
  59. Philander, S. G. H., and R. C. Pacanowski, 1986a: A Model of the Seasonal Cycle in the Tropical Atlantic Ocean. J. Geophys. Res.,91, 14, 192–14, 206.Google Scholar
  60. Philander, S. G. H., and R. C. Pacanowski, 1986b: The Mass and Heat Budget in a Model of the Tropical Atlantic Ocean. J. Geophys. Res.,91, 14, 212–14, 220.Google Scholar
  61. Polonsky, A. B., 1985: Circulation of the Atlantic ocean and meridional heat flux. marine Hydrophys. J.,1, 68–72, (in Russian).Google Scholar
  62. Polonsky, A. B., and N. P. Bulgakov, 1989: Meridional Heat Fluxes in the Equatorial Atlantic. 6-th Session CCCO Report, Kiev, 31–34.Google Scholar
  63. Polonsky, A. B., A. Diakite, Yu. V. Artamonov, 1986: Large-sclae circulation in the N-E Tropical Atlantic. Conakry: Preprint, (in Russian).Google Scholar
  64. Polonsky, A.B., A. Diakite, 1987: Atlas des courants saisonniéres de la zone nord-est de l'Atlantique Tropical (Secteur Guinéen). Conakry: 101 p.Google Scholar
  65. Polonsky, A. B., Yu. N. Goryachkin, V. V. L'vov, and V. V. Rossow, 1985: Structure of the NECC in the N-W Tropical Atlantic. Coll. pap. “Experim. invest. of the Trop. Atl.”, Sevastopol, 61–78, (in Russian).Google Scholar
  66. Polonsky, A. B., V. P. Nikiforava and E. G. Nikolaenko, 1991: Hydrophysical fields of the tropical Atlantic. PII: The currents of the Equatorial Atlantic. Obninsk, 101 p. (in Russian).Google Scholar
  67. Polonsky, A. B., E. G. Nikolaenko, and S. Konate, 1987: On an Average Circulation of the Equatorial Atlantic Ocean. Tropical Ocean-Atm. Newslett.,41, 10–12.Google Scholar
  68. Reverdin, G., and M. J. McPhaden, 1986: Near-Surface Current and Temperature Variability Observed in the Equatorial Atlantic from Drifting Buoys. J. Geophys. Res.,91, 6569–6581.Google Scholar
  69. Richardson, Ph. L., and T. K. Mckee, 1984: Average seasonal variation of the Atlantic equatorial currents from historical ship drifts. J. Phys. Oceanogr.,14, 1226–1238.Google Scholar
  70. Richardson, Ph. L., and D. Walsh, 1986: Mapping Climatological Seasonal Variations of Surface Currents in the Tropical Atlantic Using Ship Drifts. J. Geophys. Res.,91, 10, 537–10, 550.Google Scholar
  71. Richardson, Ph. L., and S. G. H., Philander, 1987: The seasonal Variations of Surface Currents in the Tropical Atlantic Ocean: A Comparison of Ship Drift Data With Results From A General Circulation Model. J. Geophys. Res.,92, 715–724.Google Scholar
  72. Sarkisyan, A. S., and Yu. L. Demin, 1986: The methods and results of calculation of the World ocean circulation. Leningrad: Hydrometeoizdat, (in Russian).Google Scholar
  73. Sarkisyan, A. S., and A. A. Serebryakov, 1970: An example of the equatorial current calculation. Marine Hydrophys. Res.,1, 60–69, (in Russian).Google Scholar
  74. Schott, F. A., and C. W. Böning, 1991: The WOCE Model in the Western Equatorial Atlantic: Upper Layer Circulation. J. Geophys. Res.96, 6993–7004.Google Scholar
  75. Semtner, A. J., and W. R. Holland, 1980: Numerical simulation of equatorial ocean circulation. Part 1: A basic case in turbulent equilibrium. J. Phys. Oceanogr.,10, 667–697.Google Scholar
  76. Stommel, H., 1965: Review of the sea currents theory, (trans. to Russian). — In. Problems of the ocean circulation. Mir, Moscow, 5–14.Google Scholar
  77. Weisberg, R. H., 1979: Equatorial waves during GATE and their relation to the mean zonal circulation. Deep-Sea Res.,26, suppl. 2, 179–198.Google Scholar
  78. Weisberg, R. H., 1984a: SEQUAL/FOCAL: First year results on the circulation in the equatorial Atlantic. Geophys. Res. Lett.,11, 713–714.Google Scholar
  79. Weisberg, R. H., 1984b: Instability waves observed on the equator in the Atlantic Ocean during 1983. Geophys. Res. Lett.,11, 753–756.Google Scholar
  80. Zelen'ko, A. A., E. N. Mikhailova, A. B. Polonsky, and N. B. Shapiro, 1984: Seasonal variability of the equatorial ocean fields modelling. Coll. pap. “Dynamics of the ocean”, Moscow: Hydrometeoizdat, 70–82, (in Russian).Google Scholar

Copyright information

© Deutsches Hydrographisches Institut 1993

Authors and Affiliations

  • Alexander B. Polonsky
    • 1
  • Evgeniy G. Nikolaenko
    • 1
  • Sekou Konate
    • 1
  • Toumany Camara
    • 1
  1. 1.Centre de Recherche Scientifique de Conakry-RogbaneRepublique de Guinee
  2. 2.Marine Hydrophysical InstituteAcademy of SciencesSevastopolUkraine

Personalised recommendations