Skip to main content
Log in

A three dimensional boundary fitted coordinate hydrodynamic model, part I: Development and testing

Ein dreidimensionales hydrodynamisches Modell in randwert-angepaßten Koordinaten, Teil I: Entwicklung und Erprobung

Un modèle hydrodynamique tri-dimensionnel utilisant un système de coordonnées adapté aux frontières, 1ère Partie: Develloppement et test

  • Abhandlungen
  • Published:
Deutsche Hydrografische Zeitschrift Aims and scope Submit manuscript

Summary

A three dimensional hydrodynamic model has been developed in boundary fitted coordinates for application to shelf and coastal sea circulation. The momentum and continuity equations are solved on a space staggered grid system using a semi-implicit finite-difference solution algorithm for the exterior vertically averaged flow and an explicit procedure for the interior flow. The vertical coordinate, transformed by the local depth, is approximated by a series of permeable layers. The interior momentum equations are solved explicitly with the exception that the vertical diffusive terms employ an implicit specification to ease the time step restriction. The model has been tested in a two dimensional mode against analytic solutions for a standing wave in a closed basin, tidal flow in a annular basin with constant depth and wind driven flow in a elliptic cylindrical basin. Three dimensional tests of the code include wind and density forcing in a rectangular basin. All simulations show excellent agreement with the analytic solutions.

Zusammenfassung

Ein dreidimensionales hydrodynamisches Modell in randwert-angepaßten Koordinaten wurde entwickelt zur Berechnung der Zirkulation in Schelf- und Randmeeren.

Die Impuls- und Kontinuitätsgleichungen werden in einem räumlich verschachtelten Gitter mit einem halbimpliziten finiten Differenzenverfahren für den externen Anteil der vertikal integrierten Strömung und einem expliziten Verfahren für den internen Anteil gelöst. Die Vertikalkoordinate wird nach Transformation mit der lokalen Wassertiefe mit einer Reihe permeabler Schichten approximiert. Die Impulsgleichung des internen Anteils wird explizit gelöst mit Ausnahme des vertikalen Diffusionsterms. Dieser wird implizit behandelt, um die Begrenzung durch den Zeitschritt zu vermeiden. Das Modell wurde in einer zweidimensionalen Version getestet und die Ergebnisse verglichen mit den analytischen Lösungen einer stehenden Welle in einem geschlossenen Becken, einer Gezeitenströmung in einem Ringkanal mit konstanter Tiefe und windinduzierter Strömung in einem elliptischen und zylindrischen Becken. Der Test des dreidimensionalen Modells berücksichtigt Wind und Massenaufbau in einem Rechteckbecken. Alle Simulationen zeigen eine sehr gute Übereinstimmung der Ergebnisse mit der analytischen Lösung.

Résumé

Un modèle hydrodynamique tri-dimensionnelle avec un système de coordonnées adapté aux frontières a été développé pour simuler les courants côtiers et du plateau continental. Les équations de mouvement et de continuité sont résolues sur des grilles spatiales séparées et emboitées en utilisant un schema semi-implicite aux différences finies pour le courant barotrope et un schema explicite pour le courant barocline. La coordonnée verticale est adaptée à la prodondeur locale et est approximée en utilisant une série de couches perméables. Les équations de mouvement interne pour les vitesses baroclines sont résolues explicitement à l'exception des termes diffusifs verticaux qui utilisent un schema implicite pour pallier les contraintes de pas de temps. Le modèle a été testé en mode bi-dimensionnel en comparaison avec des solutions analytiques pour une onde stationnaire en bassin clos, pour un courant de marée en bassin annulaire de profondeur constante et pour un courant du au vent dans un bassin cylindrique de section elliptique. Des tests tri-dimensionnels du code de calcul en bassin rectangulaire font intervenir des variations de densité et de force du vent. Toutes ces simulations fournissent d'excellentes concordances avec les solutions analytiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A. and V. R. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general circulation model. Methods in Computational Physics, Vol.17, Academic Press, 173–265.

  • ASCE Task Committee on Computational Hydraulics, 1980: Sources of computer programs in hydraulics. J. Hydraul. Div. Amer. Soc. Civ. Eng.,106, 915–923.

    Google Scholar 

  • Blumberg, A. and H. J. Herring, 1982: A vertically integrated circulation model using curvilinear coordinates. Prelim. Rep. U.S. Dept. Interior, Contract AA851-CT1-61, 17 pp.

  • Butler, H. L., 1980: Evolution of a numerical model for simulating longperiod wave behavior in ocean-estuarine systemes. Estuarine and Wetland Processes, P. Hamilton and K. MacDonald, Eds., Plenum, 147–182.

  • Gordon, R. and M. Spaulding, 1974: A bibliography of numerical models for tidal rivers, estuaries and coastal waters, Mar. Tech. Rep.32, University of Rhode Island, 55 pp.

  • Gordon, R. B., 1982: Wind driven circulation in Narragansett Bay. Ph. D. Dissertation, Dept. of Ocean Engineering, University of Rhode Island, 166 pp.

  • Hansen, D. V. and M. R. Rattray, 1965: Gravitational circulation in straits and estuaries, J. Mar. Res.,23 (2), 104–122.

    Google Scholar 

  • Hinwood, J. B. and I. Wallis, 1975: Review of models of tidal waters. J. Hydraul. Div., Amer. Soc. Civ. Eng., 101, 1404–1421.

    Google Scholar 

  • Horikawa, K., 1978: Coastal Engineering —An introduction to ocean engineering. University of Tokyo Press, 420 pp.

  • Ianniello, J., 1977: Non-linearly induced residual currents in tidally dominated estuaries, Ph. D. thesis, Univ. of Conn., 300 pp.

  • Ippen, A., Ed., 1966: Estuary and coastline hydrodynamics. McGraw-Hill, New York, 744 pp.

    Google Scholar 

  • Isaji, T., M. Spaulding and J. C. Swanson, 1982: A three-dimensional hydrodynamic model of wind tidally forced flows on Georges Bank. In: Interpretation of the Physical Oceanography of Georges Bank, EG & G Environmental Consultants, Report to U.S. Minerals Management Service, Contract #AA851-CT1-39.

  • Johnson, B. H., 1980: VAHM-A vertically averaged hydrodynamic model using boundary-fitted coordinates. MP HL-80-3, U.S. Army Engineers Waterway Experiment Station, Vicksburg, MS, 52 pp.

  • Johnson, B. H., 1982: Numerical modeling of estuarine hydrodynamics on a boundary fitted coordinate system. Numerical Grid Generation, J. Thompson, Ed., Elsevier, 409–436.

  • Leendertse, J. and S. K. Liu, 1977: A three-dimensional turbulent energy model for estuaries and coastal seas: Volume IV, Turbulent Energy Computation, R-2187-OWRT, The Rand Corp.

  • Lynch, D. R. and W. G. Gray, 1978: Analytic solutions for computer flow model testing. J. Hydraulics Div., Am. Soc. Civ. Eng., 104, 1409–1428.

    Google Scholar 

  • Madala, R. V. and S. A. Piacsek, 1977: A semi-implicit numerical model for baroclinic oceans. J. Comput. Phys.,23, 167–178.

    Article  Google Scholar 

  • Peffley, M. B. and J. J. O'Brien, 1976: A three-dimensional simulation of coastal upwelling of Oregon. J. Phys. Oceanogr.,6, 164–180.

    Article  Google Scholar 

  • Pinder, G. F. and W. G. Gray, 1977: Finite element simulation in surface and subsurface hydrology. Academic Press.

  • Reid, R. O., A. C. Vastano, R. E. Whitaker and J. J. Wanstrath, 1977: Experiments in storm surge simulation. The Sea, Vol.6, E. D. Goldberg, I. N. McCabe, J. J. O'Brien and J. H. Steele, Eds., Wiley, 145–168.

  • Rottman, K., 1960: Mathematische Formelsammlung. Bibliographisches Institut, Mannheim, W. Germany.

    Google Scholar 

  • Spaulding, M. L., 1984: A vertically averaged circulation model using boundary-fitted coordinates. J. Phys. Oceanogr.,14, 973–982.

    Article  Google Scholar 

  • Swanson, J. C. and M. L. Spaulding, 1978: Review of continental shelf circulation modeling. NASA Langley Research Center, Hampton, Virginia, Grant No. NSG 1495.

  • Swanson, J. C., 1986: A three-dimensional numerical model system of coastal circulation and water quality. Ph. D. Thesis, Dept. of Ocean Engineering, University of Rhode Island, Kingston, RI.

    Google Scholar 

  • Tacker, W. C., 1977: Irregular grid finite-difference techniques: simulations of oscillations in shallow circular basins. J. Phys. Oceanogr.7, 284–292.

    Article  Google Scholar 

  • Thames, F. C., 1975: Numerical solution of the incompressible Navier-Stokes equations about arbitrary two-dimensional bodies. Ph. D. Dissertation, Mississippi State University.

  • Thames, F. C., J. F. Thompson, C. W. Mastin and R. L. Walker, 1977: Numerical solutions for viscous and potential flow about arbitrary two-dimensional bodies using body-fitted coordinate systems. J. Comput. Phys.,24, 245–273.

    Article  Google Scholar 

  • Thompson, J. F., F. C. Thames and C. W. Mastin, 1974: Automatic numerical generation of body-fitted curvilinear coordinates systems for fields containing any number of arbitrary two-dimensional bodies. J. Comput. Phys.15, 299–317.

    Article  Google Scholar 

  • Thompson, J. F., F. C. Thames, S. P. Shanks, R. N. Reddy and C. W. Mastin, 1976: Solutions of the Navier-Stokes equations in various flow regimes on field containing any number of arbitrary bodies using boundary fitted coordinate systems. Proc. Fifth Int. Conf. on Numerical Methods in Fluid Dynamics, Enschede, The Netherlands, Lecture Notes in Physics, Vol.59, Springer-Verlag, 421–427.

  • Thompson, J. F., F. C. Thames and C. W. Mastin, 1977a: TOMCAT-A code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies. J. Comput. Phys.24, 274–302.

    Article  Google Scholar 

  • Thompson, J. F., F. C. Thames and C. W. Mastin, 1977b: Boundary-fitted curvilinear coordinate system for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies. NASA CR-2729.

  • Waldrop, W. R. and R. C. Farmer, 1974: Three-dimensional computation of buoyant plumes. J. Geophys. Res.,79, 1269–1276.

    Article  Google Scholar 

  • Waldrop, W. R. and F. B. Tatom, 1976: Analysis of the thermal effluent from the Gallatin steam plant during low river flows. Rep. 33-30, Tennessee Valley Authority.

  • Wanstrath, J. J., 1977: Nearshore numerical storm surge and tidal simulation. TR H-77-17, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Willemse, J. B. T. M., G. S. Stelling and G. K. Verboom, 1986: Solving the shallow water equations with an orthogonal coordinate transformation. Delft communication No. 356. Presented at International Symposium on Computational Fluid Dynamics, Tokyo, Japan, September 9–12, 1985.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig Swanson, J., Spaulding, M., Mathisen, JP. et al. A three dimensional boundary fitted coordinate hydrodynamic model, part I: Development and testing. Deutsche Hydrographische Zeitschrift 42, 169–186 (1989). https://doi.org/10.1007/BF02226293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02226293

Keywords

Navigation