Advertisement

Insectes Sociaux

, Volume 32, Issue 3, pp 305–312 | Cite as

Crest-line orientation inCamponotus pennsylvanicus (DeGeer)

  • J. H. Klotz
  • S. L. Cole
  • H. R. Kuhns
Article

Summary

We tested two hypotheses about the mechanism of crest-line trailing in the carpenter ant,Camponotus pennsylvanicus (DeGeer): (1) the slope hypothesis says that the ant turns back toward the crest-line whenever a critical downslope is encountered (geoclinotais); (2) the displacement hypothesis says that the oscillation around the crestline has an intrinsically specified amplitude. Inthe experiments, the ants shuttled between the nest and a feeding station running across the tops of cylinders of variable diameter. This was done under both high and low light intensity. The amplitudes of the oscillations correlate positively with the diameters of the cylindrical substrate, which supports the first hypothesis.

Keywords

Light Intensity Variable Diameter Displacement Hypothesis Cylindrical Substrate Camponotus Pennsylvanicus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die Grat-Orientierung vonCamponotus pennsylvanicus (DeGeer)

Zusammenfassung

Wir prüften zwei Erklärungsprinzipien für den Mechanismus des Gratwanderns bei der AmeiseCamponotus pennsylvanicus (DeGeer): (1) Nach der Reizhypothese wendet die Ameise bei einem kritischen Hangwinkel hangaufwärts (Geoklinotaxis). (2) Nack der Spontanhypothese pendelt die gratwandernde Ameise mit selbstbestimmer Amplitude beidseitig um den Grat. Im Experiment unter starker und schwacher Beleuchtung liefen die Ameisen über Zylinder variablen Durchmessers zwischen Nest und Futterstelle. Die beobachtete positive Korrelation zwischen der Pendelamplitude und dem Zylinderdurchmesser belegt die erste Hypothese.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dixon W., Brown M., 1979. —Biomedical Computer Programs, P-series. University of California Press, Berkeley.Google Scholar
  2. Iander R., Daumer K., 1974. — Guide-line and gravity orientation of blind termites foraging in the open (Termitidae: Macrotermes, Hospitalitermes).Insect. Soc., 21 (1), 45–69.CrossRefGoogle Scholar
  3. Klotz J., 1984. — Diel foraging-niche separation in two ant species sharing the same resource (Hymenoptera, Formicidae).J. Kansas Ent. Soc., 57 (1), 111–118.Google Scholar
  4. Kretz R., 1979. — A behavioural analysis of colour vision in the antCataglyphis bicolor (Formicidae, Hymenoptera).J. Comp. Physiol., 131, 217–233.CrossRefGoogle Scholar
  5. Markl H., 1963. — Bristle fields: gravity receptors of some hymenoptera.Nature, 198, 173–175.Google Scholar
  6. Martinoya C., Bloch S., Ventura D., Puglia N. — Spectral efficiency as measured by ERG in the ant(Atta sexdens rubropilosa). J. Comp. Physiol., 104, 205–210.Google Scholar
  7. Roth H., Menzel (R.), 1972. — ERG ofFormica polyctena and selective adaptation, inWehner, R.,Information processing in the visual systems of insects. Springer-Verlag, New York, 334 p.Google Scholar
  8. Tsuneki K., 1953. — On colour vision in two species of ants, with special emphasis on their relative sensitivity to various monochromatic lights.Japan J. Zool., 187–219.Google Scholar

Copyright information

© Masson 1985

Authors and Affiliations

  • J. H. Klotz
    • 1
  • S. L. Cole
    • 2
  • H. R. Kuhns
    • 3
  1. 1.Departement of EntomologyUniversity of KansasLawrenceU.S.A.
  2. 2.Mid-America Nazarene CollegeOlatheU.S.A.
  3. 3.University of Kansas School of MedicineWichitaU.S.A.

Personalised recommendations