Insectes Sociaux

, Volume 31, Issue 1, pp 87–102 | Cite as

The reproductive cycle of the queenless ant pristoMyrmex pungens

  • Tomio Itow
  • Kazuhiro Kobayashi
  • Masao Kubota
  • Kazuo Ogata
  • Hirotami T. Imai
  • Ross H. Crozier


The life cycle of the myrmicine antPristomyrmex pungens was investigated. Colonies of this species are usually composed of several thousand small workers, although a few males (2–3 %) occasionally appear during June and July in mature colonies, and large workers with ocelli and abortive spermathecae (here termedergatoid queens) were observed extremely rarely. We found that the virgin small workers can lay eggs and that these develop into further small workers. Cerebral ganglion cells and oogonial cells had the diploid chromosome number (2 n=24), but the haploid number (n=12) was observed in oocytes at pachytene, and also in spermatocytes from the rare males. Males have functionally normal copulatory organs and their spermatogenesis is normal, but they probably do not mate, because small workers have no spermatheca and their copulatory organs are degenerative. These observations indicate that reproduction inP. pungens is carried out predominatly or, probably, wholly by the small workers and hence is thelytokous. We discuss the evolution of theP. pungens life cycle, pointing out the difficulty of applying the “queen” concept to this species or even in deciding whether or not it is “eusocial”. In view of the apparent genetic isolation between colonies, the mode of selection maintaining sociality in this case is probably interdemic group selection rather than kin selection.


Reproductive Cycle Group Selection Nous Avons Genetic Isolation Cerebral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Cycle reproductif d'une colonie sans reine de pristomyrmex pungens


Nous avons étudié le cycle biologique de la fourmi myrmicinePristomyrmex pungens. En général, les colonies de cette espèce se composent de plusieurs milliers de petites ouvirères, tandis qu'un petit nombre de mâles (2–3 %) apparaissent occasionnellement en juin et juillet dans les colonies mûres et que de grandes ouvrières à ocelles et spermathèque abortive (reines ergatoïdes) ont pu être observées très rarement. Nous avons démontré que les petites ouvrières vierges peuvent pondre des œufs qui donnent d'autres petites ouvrières. Les cellules des ganglions cérébroïdes et les ovogonies des ouvrières sont diploïdes (2 n=24), mais la formule haploïde (n=12) a pu être observée chez les ovocytes au stade pachytène ainsi que chez les spermatocytes des mâles. Ces mâles possèdent des organes copulatoires normaux et leur spermatogenèse est normale, mais ils ne fécondent probablement pas les petites ouvrières, lesquelles sont dépourvues de spermathèque et d'organes copulatoires fonctionnels. Ces observations indiquent que la reproduction chezP. pungens est assumée de façon prépondérante, et probablement complètement, par les petites ouvrières, de façon par conséquent thélytoque. Nous discutons l'évolution du cycle biologique deP. pungens, en soulignant la difficulté d'appliquer à cette espèce le concept de “reine” ou même de décider si elle est »eusociale» ou non. Au regard de l'isolement génétique présumé entre colonies, le mode de sélection maintenant dans ce cas une structure sociale est probablement davantage une sélection de groupe interdémique plutôt qu'une sélection de parentèle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharya G.C., 1943. — Reproduction and caste determination in aggressive red-antsOecophylla smaragdina Fabr.Trans. Bose Res. Inst. (Calcutta), 15, 137–156.Google Scholar
  2. Buschinger A., 1968. — Untersuchungen anHarpagoxenus sublaevis Nyl. (Hymenoptera, Formicidae). III: Kopula, Koloniegrunendung, Raubzuege.Ins. Soc., 15, 89–104.Google Scholar
  3. Buschinger A., Winter U., 1975. — Der Polymorphismus der Sklavenhaltenden AmeiseHarpagoxenus sublaevis (Nyl.),Ins. Soc., 22, 333–362.CrossRefGoogle Scholar
  4. Buschinger A., Winter U., 1978. — Echte Arbeiterinnen, fertile Arbeiterinnen und sterile Wirstweibchen in Voelkern der dulotischen AmeiseHarpagoxenus sublaevis (Nyl.) (Hym., Form.),Ins. Soc., 25, 63–78.CrossRefGoogle Scholar
  5. Cagniant H., 1982. — La parthénogenèse thélytoque et arrhénotoque chez la fourmiCataglyphis cursor (Hymenoptera, Formicidae). Etude des œufs pondus par les reines et les ouvrières: morphologie, devenir, infeuence sur le déterminisme de la caste reine.Ins. Soc., 29, 175–188.Google Scholar
  6. Crozier R.H., 1970. — Karyotypes of twenty-one ant species (Hymenoptera, Formicidae), with reviews of the known ant karyotypes.Canad. J. Genet. Cytol., 12, 109–128.PubMedGoogle Scholar
  7. Crozier R.H., 1975. —Hymenoptera. Animal cytogenetics 3, Insecta 7, Gebrüder Borntraeger Berlin.Google Scholar
  8. Crozier R.H., 1977. — Evolutionary genetics of the Hymenoptera.Ann. Rev. Entomol., 22, 263–288.CrossRefGoogle Scholar
  9. Crozier R.H., 1982. — On insects and insects: Twists and turns in our understanding of the evolution of eusociality, pp. 4–9, in: M.D. Breed, C.D. Michener and H.E. Evans (eds.),The biology of social insects, Westview.Google Scholar
  10. Evans H.E., 1963. — A new species ofCephalonomia exhibiting an unusually complex polymorphism (Hymenoptera, Bethylidae).Psyche, 70, 151–163.Google Scholar
  11. Freeland J., 1958. — Biological and social patterns in the Australian bulldog ants of the genusMyrmecia. Aust..J. Zool., 6, 1–18.Google Scholar
  12. Haskins C.P., Whelden R.M., 1965. — “Queenlessness”, worker sibship, and colony versus population structure in the formicid genusRhytidoponera.Psyche, 72, 87–112.Google Scholar
  13. Imai H.T., 1966. — The chromosome observation techniques of ants and the chromosomes of Formicinae and Mymicinae.Acta Hymenopterologica, 2, 119–131.Google Scholar
  14. Imai H.T., Crozier R.H., Taylor R.W., 1977. — Karyotype evolution in Australian ants.Schromosoma, 59, 341–393.CrossRefGoogle Scholar
  15. Ledoux, A., 1950. — Recherche sur la biologie de la fourmi fileuse (Oecophylla longinoda Latr.).Ann. Sci. Nat., 12, 313–461.Google Scholar
  16. Ledoux A., 1954. — Recherche sur le cycle chromosomique de la fourmi fileuseOecophylla longinoda Latr. (Hyménoptère, Formicoidea).Ins. Soc., 1, 149–175.CrossRefGoogle Scholar
  17. Le Masne G., 1956. — La signification des reproducteurs aptères chez la fourmiPonera eduardi Forel.Ins. Soc., 3, 239–259.CrossRefGoogle Scholar
  18. Michener C.D., 1969. — Comparative social behavior of bees.Ann. Rev. Entomol., 14, 299–342.CrossRefGoogle Scholar
  19. Mizutani A., 1980. — Preliminary report on worker oviposition in the antPristomyrmex pungens Mayer.Kontyû, 48, 327–332.Google Scholar
  20. Ono S., 1983. — A preliminary note on the thelytokous parthenogenesis ofPristomyrmex pungens.Ari Rep. Myrmecol. Soc. (Japan), 11, 4 (in Japanese).Google Scholar
  21. Oster G.F., Wilson E.O., 1978. —Caste and ecology in the social insects, Princeton Univ. Press.Google Scholar
  22. Peeters C.P., 1982. — The reproductive strategy of the ponerineOphtalmopone berthoudi: an insight into the evolution of ant eusociality, pp. 220–221, in: Breed M.D., Michener C.D. and Evans H.E. (eds.),The biology of social insects, Westview.Google Scholar
  23. Roessler Y., De Bach P., 1973. — The evolutionary plasticity of the thelytokous form ofAphytis mytilaspidus (Le Baron) (Hymenoptera, Aphelinidae).Hilgardia, 42, 149–176.Google Scholar
  24. Rothenbuhler W.C., Kulincevic J.M., Kerr W.E., 1968. — Bee genetics.Ann. Rev. Genet., 2, 413–438.CrossRefGoogle Scholar
  25. Schmieder R.G., 1938. — The polymorphic forms ofMelittobia chalybii Ashmead and the determining factors involved in their production (Hymenoptera, Chalcidoidea, Eulophidae).Biol. Bull., 65, 338–354.Google Scholar
  26. Smith I.C., Peacock A.D., 1957. — The cytology of Pharaoh's ant,Monomorium pharaonis (L.).Proc. Roy. Soc. Edinb., B., 66, 235–261.Google Scholar
  27. Soulié J., 1960. — Des considérations écologiques peuvent-elles apporter une contribution à la connaissance du cycle biologique des colonies deCrematogaster (Hymenoptera-Formicoidea)?Ins. Soc., 7, 283–295.CrossRefGoogle Scholar
  28. Taylor R.W., 1965. — The Australian ants of the genusPristomyrmex, with an apparent case of character displacement.Psyche, 72, 35–54.Google Scholar
  29. Taylor V.A., 1978. — A winged elite in a subcortical beetle as a model for a prototermite.Nature, 276, 73–75.CrossRefPubMedGoogle Scholar
  30. Teranishi C., 1923. — The habits and distributions of Japanese ants (II).Zool. Mag., 41, 312–332 (in Japanese).Google Scholar
  31. Vanderplank F.L., 1960. — The bionomics and ecology of the red tree ant,Oecophylla sp., and its relationship to the coconut bugPseudotherapyus wayi Brown (Coreidae.J. Anim. Ecol., 29, 15–33.Google Scholar
  32. Ward P.S., 1981. — Ecology and life history of theRhytidoponera impressa group (Hymenoptera, Formicidae). II: Colony origin, seasonal cycles, and reproduction.Psyche, 88, 109–126.Google Scholar
  33. Ward P.S., 1982. — Colony structure and genetic relatedness in a species complex of ponerine ants, pp. 413–414, in: M.D. Breed, C.D. Michener and H.E. Evans (eds.),The biology of social insects, Westview.Google Scholar
  34. Ward P.S., 1983. — Genetic relatedness and colony organization in a species complex of ponerine ants. I: Phenotypic and genotypic composition of colonies.Behav. Ecol. Sociobiol. (in press).Google Scholar
  35. Way M.J., 1954 — Studies of the life history and ecology of the antOecophylla longinoda Latreille.Bull. Ent. Res., 45, 93–112.Google Scholar
  36. Wesson L.G., 1939. — Contribution to the natural history ofHarpagoxenus americanus (Hymenoptera, Formicidae).Trans. Am. Ent. Soc., 65, 97–112.Google Scholar
  37. Wheeler W.M., 1905. — Worker ants with vestiges of wings.Bull. Am. Mus. Nat. Hist., 21, 405–408.Google Scholar
  38. Wheeler W.M., 1922. —The social insects, Kegan Paul, Trench, Trubner & Co.Google Scholar
  39. Wheeler W.M., Chapman J.W., 1922. — The mating ofDiacamma.Psyche, 29, 203–211.Google Scholar
  40. Wilson E.O., 1953. — The origin and evolution of polymorphism in ants.Quart. Rev. Biol., 28, 136–156.CrossRefPubMedGoogle Scholar
  41. Wilson E.O., 1971. —The insect societies, Harvard.Google Scholar

Copyright information

© Masson 1984

Authors and Affiliations

  • Tomio Itow
    • 1
  • Kazuhiro Kobayashi
    • 1
  • Masao Kubota
    • 2
  • Kazuo Ogata
    • 3
  • Hirotami T. Imai
    • 4
  • Ross H. Crozier
    • 5
  1. 1.Department of Biology, Faculty of EducationShizuoka UniversityShizuokaJapan
  2. 2.Odawara, Kanagawa-kenJapan
  3. 3.Faculty of AgricultureKyushu UniversityFukuokaJapan
  4. 4.National Institute of GeneticsMishima, Shizuoka-kenJapan
  5. 5.School of ZoologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations