Calcified Tissue Research

, Volume 24, Issue 1, pp 81–91 | Cite as

Cellular localization and concentration of bone cyclic nucleotides in response to acute PTE administration

  • Z. Davidovitch
  • P. C. Montgomery
  • J. L. Shanfeld


The cyclic AMP and cyclic GMP concentrations of alveolar bone of control and PTE-treated cats were measured by chemical and immunohistochemical methods. In the PTE-treated animals, alveolar bone osteoblasts stained intensely for cAMP, but very weakly for cGMP; the periodontal ligament (PDL) cells stained for cAMP similarly to the controls, but some PDL cells stained more intensely for cGMP than their controls; osteocytes stained for cAMP with greater intensity than in the controls; osteoclasts stained intensely for both cyclic nucleotides. We found that bone samples taken from animals 20 and 60 min after administration of PTE contained twice the amount of cAMP, and almost three times the amount of cGMP observed in the controls. These results indicate that the cellular source of bone cyclic nucleotides in PTE-treated animals varies as to cell type, and therefore in bone and PDL the functions mediated by cAMP are not necessarily antagonistic to those mediated by cGMP.

Key words

Cyclic nucleotides Concentration and localization Bone and periodontal cells PTE treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooker, T.L., Jr., Appleman, M.M.: The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in biological materials by enzymatic radio-isotopic displacement. Biochemistry7, 4177–4181 (1968)PubMedGoogle Scholar
  2. 2.
    Chase, L.R., Aurbach, G.D.: The effect of parathyroid hormone on the concentration of adenosine 3′,5′-monophosphate in skeletal tissue in vitro. J. Biol. Chem.245, 1520–1526 (1970)PubMedGoogle Scholar
  3. 3.
    Davidovitch, Z., Montgomery, P.C., Eckerdal, O., Gustafson, G.T.: Demonstration of cyclic GMP in bone cells by immunohistochemical methods. Calcif. Tiss. Res.19, 305–315 (1976)Google Scholar
  4. 4.
    Davidovitch, Z., Montgomery, P.C., Eckerdal, O., Gustafson, G.T.: Cellular localization of cyclic AMP in periodontal tissues during experimental tooth movement in cats. Calcif. Tiss. Res.19, 316–329 (1976)Google Scholar
  5. 5.
    Davidovitch, Z., Montgomery, P.C., Shanfeld, J.L.: Guanosine 3′,5′-monophosphate in bone: Microscopic visualization by an immunohistochemical technique. Calcif. Tiss. Res.24, 73–79 (1977).Google Scholar
  6. 6.
    DeLange, R.J., Kemp, R.G., Riley, W.D., Cooper, R.A., Krebs, E.G.: Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′,5′-monophosphate. J. Biol. Chem.243, 2200–2208 (1968)PubMedGoogle Scholar
  7. 7.
    Diamantstein, T., Ulmer, A.: Effect of cyclic nucleotides on DNA synthesis in mouse lymphoid cells. Immun. Commun.4, 51–62 (1975)Google Scholar
  8. 8.
    Diamantstein, T., Ulmer, A.: Regulation of DNA synthesis by guanosine-5′-diphosphate, cyclic guanosine-3′,5′-monophosphate, and cyclic adenosine-3′,5′-monophosphate in mouse lymphoid cells. Exp. cell res.93, 309–314 (1974)Google Scholar
  9. 9.
    Dietze, G., Hepp, K.D.: Effect of 3′,5′-AMP on calcium-activated ATPase in rat heart sarcolemma. Biochem. Biophys. Res. Commun.46, 269–278 (1972)PubMedGoogle Scholar
  10. 10.
    Eckerdal, O.: Tomography of the temporomandibular joint. Acta Radiologica, supplement329, 1–107 (1973)Google Scholar
  11. 11.
    Entmann, M.L., Levey, G.S., Epstein, S.E.: Mechanism of action of epinephrine and glucagon on the canine heart: Evidence for increase in sarcotubular calcium stores mediated by cyclic 3′,5′-AMP. Circ. Res.25, 429–438 (1969)PubMedGoogle Scholar
  12. 12.
    Fransden, E.K., Krishna, G.: A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sciences18, 529–542 (1976)PubMedGoogle Scholar
  13. 13.
    Friedmann, N.: Effects of glucagon and cyclic-AMP on ion fluxes in the perfused liver. Biochim. Biophys. Acta274, 214–225 (1972)PubMedGoogle Scholar
  14. 14.
    George, W.J., Polson, J.B., O'Toole, A.G., Goldberg, N.D.: Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Nat. Acad. Sci. USA66, 398–403 (1970)PubMedGoogle Scholar
  15. 15.
    Gillette, R.W., McKenzie, G.O., Swanson, M.H.: Modification of the lymphocyte response to mitogens by cyclic AMP and cyclic GMP. J. Reticuloendoth. Soc.16, 289–299 (1974)Google Scholar
  16. 16.
    Gilman, A.G.: A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Nat. Acad. Sci. USA67, 305–312 (1970)PubMedGoogle Scholar
  17. 17.
    Goldberg, N.O., O'Dea, R.F., Haddox, M.K.: Cyclic GMP. In: Advances in cyclic nucleotide research (Greengard, P., and Robison, G.A., eds.), Vol. 3, pp. 155–223. New York: Raven Press 1973Google Scholar
  18. 18.
    Graham, R.C., Karnovsky, M.J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem.14, 291–302 (1966)PubMedGoogle Scholar
  19. 19.
    Herrmann-Erlee, M.P.M.: A parathyroid-like action of dibutyryl cyclic adenosine 3′,5′-monophosphate on the explanted embryonic mouse radius. Calcif. Tiss. Res.4 (supplement), 70–72 (1970)Google Scholar
  20. 20.
    Ignarro, L.J., George, W.J.: Mediation of immunologic discharge of lysosomal enzymes from human neutrophils by guanosine 3′,5′-monophosphate. J. Exp. Med.140, 225–238 (1974)PubMedGoogle Scholar
  21. 21.
    Johnson, L.D., Hadden, J.W.: Cyclic GMP and lymphocyte proliferation: Effects of DNA-dependent RNA polymerase I and II activities. Biochem. Biophys. Res. Commun.66, 1498–1505 (1975)PubMedGoogle Scholar
  22. 22.
    Mason, T.E., Phifer, R.F., Spicer, S.S., Swallow, R.A., Dreskin, R.B.: An immunoglobulin-enzyme bridge method for localizing tissue antigens. J. Histochem. Cytochem.17, 563–569 (1969)PubMedGoogle Scholar
  23. 23.
    Matthews, J.L., Martin, J.H.: Intracellular transport of calcium and its relationship to homeostasis and mineralization: An electron microscope study. Am. J. med.50, 589–597 (1971)PubMedGoogle Scholar
  24. 24.
    McGuire, J.L., Marks, S.C.: The effects of parathyroid hormone on bone cell structure and function. Clin. Orthopaed.100, 392–405 (1974)Google Scholar
  25. 25.
    Murad, F., Brewer, H.B., Jr., Vaughn, M.: Effect of thyrocalcitonin on adenosine 3′,5′-cyclic phosphate formation by rat kidney and bone. Proc. Nat. Acad. Sci. USA65, 446–453 (1970)PubMedGoogle Scholar
  26. 26.
    Nagata, N., Sasaki, M., Kimura, N., Nakane, K.: Effects of porcine calcitonin on the metabolism of calcium and cyclic AMP in rat skeletal tissue in vivo. Endocrinology97, 527–535 (1975)PubMedGoogle Scholar
  27. 27.
    Nagata, N., Kimura, N., Sasaki, M., Nakane, K., Tanaka, Y.: Localization of cell groups sensitive to parathyroid hormone and calcitonin in rat skeletal tissue. Biochim. Biophys. Acta421, 218–227 (1976)PubMedGoogle Scholar
  28. 28.
    Park, H.Z., Talmage, R.V.: Relation of endogenous parathyroid secretion to3H-cytidine incorporation into bone cells. Endocrinology80, 552–560 (1967)PubMedGoogle Scholar
  29. 29.
    Peck, W.A., Carpenter, J., Messinger, K., DeBra, D.: Cyclic 3′,5′ adenosine monophosphate in isolated bone cells: Response to low concentrations of parathyroid hormone. Endocrinology92, 692–697 (1973)PubMedGoogle Scholar
  30. 30.
    Prince, W.T., Berridge, M.J., Rasmussen, H.: Role of calcium and adenosine 3′,5′-cyclic monophosphate in controlling fly salivary gland secretion. Proc. Nat. Acad. Sci. USA69, 553–557 (1972)PubMedGoogle Scholar
  31. 31.
    Rao, L.G., Brunette, D.M., Heersche, J.N.M.: PTH-response after long-term culture and sub-culture of cells from newborn rat calvaria. J. Dent. Res.55, B303 (1976)Google Scholar
  32. 32.
    Roberts, W.E.: Cell population dynamics of periodontal ligament stimulated with parathyroid extract. Am. J. Anat.143, 363–370 (1975)PubMedGoogle Scholar
  33. 33.
    Roberts, W.E., Chamberlain, J.G.: Scanning electron microscopy (SEM) of the cellular and vascular elements of rat periodontal ligament (PDL). J. Dent. Res.55, B165 (1976)Google Scholar
  34. 34.
    Rodan, S.B., Rodan, G.A.: The effect of parathyroid hormone and thyrocalcitonin on the accumulation of cyclic adenosine 3′,5′-monophosphate in freshly isolated bone cells. J. Biol. Chem.249, 3068–3074 (1974)PubMedGoogle Scholar
  35. 35.
    Rodan, G.A., Bourret, L.A., Harvey, A., Mensi, T.: Cyclic AMP and cyclic GMP: Mediators of the mechanical effects on bone remodeling. Science189, 467–469 (1975)PubMedGoogle Scholar
  36. 36.
    Shanfeld, J., Shapiro, I., Davidovitch, Z.: The measurement of adenosine 3′,5′-monophosphate in bone. Anal. Biochem.66, 450–459 (1975)PubMedGoogle Scholar
  37. 37.
    Smith, D.M., Johnston, C.C., Jr.: Cyclic 3′,5′-adenosine monophosphate levels in separated bone cells. Endocrinology96, 1261–1269 (1975)PubMedGoogle Scholar
  38. 38.
    Soderling, T.R., Hickenbottom, V.P., Reimann, E.M., Hunkeler, F.L., Walsh, D.A., Krebs, E.G.: Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3′,5′-monophosphate-dependent protein kinases. J. Biol. Chem.245, 6317–6328 (1970)PubMedGoogle Scholar
  39. 39.
    Talmage, R.V., Cooper, C.W., Park, H.Z.: Regulation of calcium transport in bone by parathyroid hormone. Vitamins and Hormones28, 103–140 (1970)PubMedGoogle Scholar
  40. 40.
    Voorhees, J.J., Stawiski, M., Duell, E.A.: Increased cyclic GMP and decreased cyclic AMP levels in the hyperplastic, abnormally differentiated epidermis of psoriasis. Life Sciences13, 639–653 (1973)Google Scholar
  41. 41.
    Walsh, D.A., Perkins, J.P., Krebs, E.G.: An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J. Biol. Chem.243, 3763–3765 (1968)PubMedGoogle Scholar
  42. 42.
    Weisbrode, S.E., Capen, C.C., Nagode, L.A.: Effects of parathyroid hormone on bone of thyroparathyroidectomized rats. Am. J. Path.75, 529–536 (1974)PubMedGoogle Scholar
  43. 43.
    Weissmann, G., Goldstein, I., Hoffstein, S., Tsung, P.K.: Reciprocal effects of cAMP and cGMP on microtubule-dependent release of lysosomal enzymes. Ann. N.Y. Acad. Sci.253, 750–762 (1975)PubMedGoogle Scholar
  44. 44.
    Wicks, W.D.: Tyrosine-α-ketoglutarate transaminase: Induction by epinephrine and adenosine 3′,5′-cyclic phosphate. Science160, 997–998 (1968)PubMedGoogle Scholar
  45. 45.
    Wicks, W.D.: Regulation of protein synthesis by cyclic AMP. In: Advances in cyclic nucleotide research. (Greengard, P. and Robison, G.A., eds.), Vol. 4, pp. 335–438. New York: Raven Press 1974Google Scholar
  46. 46.
    Zimmerman, T.P., Chu, L.C., Winston, M.S.: A more sensitive radioimmunoassay (RIA) for cyclic GMP (cG). Fed. Proc.34, 231 (1975)Google Scholar
  47. 47.
    Zurier, R.B., Hoffstein, S., Weissmann, G.: Mechanisms of lysosomal enzyme release from human leukocytes: I. Effect of cyclic nucleotides and colchicine. J. Cell Biol.58, 27–41 (1973)PubMedGoogle Scholar
  48. 48.
    Zurier, R.B., Weissmann, G., Hoffstein, S., Kammerman, S., Tai, H.H.: Mechanisms of lysosomal enzyme release from human leukocytes: II. Effects of cAMP and cGMP, autonomic agonists and agents which affect microtubule function. J. Clin. Invest.53, 297–309 (1974)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Z. Davidovitch
    • 1
  • P. C. Montgomery
    • 1
  • J. L. Shanfeld
    • 1
  1. 1.Departments of Orthodontics and Pedodontics and MicrobiologyUniversity of Pennsylvania, School of Dental Medicine and Center for Oral Health ResearchPhiladelphiaUSA

Personalised recommendations