Advertisement

Calcified Tissue Research

, Volume 24, Issue 1, pp 59–64 | Cite as

Diffusion of45Ca in bovine enamel

  • G. J. Flim
  • J. Arends
Article

Summary

The penetration of45Ca ions into whole bovine enamel from an aqueous solution was studied as a function of the Ca content in the solution. A sectioning technique was employed to measure the penetration of45Ca into the enamel.

Probably only Ca ions occupying surface positions in the hydroxyapatite crystallites participate in the exchange process at the solution-enamel interface. The fraction of Ca ions participating in the exchange was 2% of the total number of Ca ions. Two different diffusion processes occur; firstly, a process governed by a diffusion coefficient, D1 ranging from about 5×10−14 to 2×10−12 cm2/s and strongly dependent on the calcium concentration in the solutions; and secondly a process with a concentration-independent diffusion coefficient, D2, with a value of 2.8×10−12 cm2/s. It is assumed that the 2 diffusion types correspond to intra-and interprismatic transport, respectively. A model based on the pore structure of dental enamel and on surface charges on hydroxyapatite crystallites is discussed.

Key words

Enamel Calcium Exchange Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, L.C., Posner, A.M., Quirk, J.P.: The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. J. Coll. Interf. Sc.42, 250–261 (1973)Google Scholar
  2. Braden, M., Duckworth, R., Joystone-Bechal, S.: The uptake of24Na by human dental enamel. Arch. oral Biol.16, 367–374 (1971)PubMedGoogle Scholar
  3. Brudevold, F., Söremark, R.: Chemistry of the mineral phase of enamel. In: Structural and chemical organization of teeth, II (A.E.W. Miles ed.), New York: Academic Press 1967Google Scholar
  4. Crank, J.: The mathematics of diffusion. Oxford: Claredon Press 1970Google Scholar
  5. Davidson, C.L.: Ontharding van tandglazuur. Thesis, University of Groningen (1973)Google Scholar
  6. Den Hartog, H.W., Welch, D.O., Royce, B.S.H.: The diffusion of calcium, phosphorus and OD ions in fluorapatite. Phys. Stat. Sol. (b)53, 201–212 (1972)Google Scholar
  7. Fosdick, L.S., Hutchinson, A.C.W.: The mechanism of caries of dental enamel. Ann. N.Y. Ac. Sc.131, 758–770 (1965)Google Scholar
  8. Groer, P.G., Marshall, J.H.: Mechanism of calcium exchange at bone surfaces. Calcif. Tiss. Res.12, 175–192 (1973)Google Scholar
  9. Johnson, N.W.: Factors affecting the differential solution of human enamel in acid and EDTA. Arch. oral Biol.16, 385–396 (1971)PubMedGoogle Scholar
  10. Jost, W.: Diffusion in solids. New York: Academic Press 1960Google Scholar
  11. Joystone-Bechal, S., Duckworth, R., Braden, M.: Diffusion of radioactive ions into human dental enamel. Arch. oral Biol.16, 375–384 (1971)PubMedGoogle Scholar
  12. Kibby, C.L., Hall, W.K.: Surface properties of calcium phosphates. In: The chemistry of biosurfaces (M.L. Hair, ed.), New York: Dekker 1972Google Scholar
  13. Kukura, M., Bell, L.C., Posner, A.M., Quirk, J.P.: Radioisotope determination of the surface concentration of calcium and phosphorus on hydroxyapatite in aqueous solution. J. Phys. Chem.76, 900–904 (1972)Google Scholar
  14. Leach, S.A.: Electrophoresis of synthetic hydroxyapatite. Arch. oral Biol.3, 48–56 (1960)PubMedGoogle Scholar
  15. Meckel, A.H.: Structure of mature human enamel. Arch. oral Biol.10, 775–783 (1965)PubMedGoogle Scholar
  16. Moreno, E.C., Zahradnik, R.T.: The pore structure of human dental enamel. Arch. oral Biol.18, 1063–1068 (1973)Google Scholar
  17. N.B.S., Tables of error functions. N.B.S. Applied Math. Series41 (1954) Washington: Natl. Bureau of StandardsGoogle Scholar
  18. Neiders, N.E., Weiss, L., Cudney, T.L.: An electrokinetic characterization of human tooth surfaces. Arch. oral Biol.15, 135–151 (1970)PubMedGoogle Scholar
  19. Poole, D.F.G.: The use of the microscope in dental research. Brit. Dent. J.121, 71–79 (1976)Google Scholar
  20. Sheppard, C.W.: Basic principles of the tracer method. New York: Wiley (1962)Google Scholar
  21. Shewmon, P.G.: Diffusion in solids. New York: McGraw-Hill 1963Google Scholar
  22. Somasundaran, P.: Zeta potential of apatite in aqueous solutions and its change during equilibration. J. Coll. Interf. Sc.27, 659–666 (1968)Google Scholar
  23. Swancar, J.R., Scott, D.B., Njemirovskij, Z.: Studies of the structure of human enamel. J. Dent. Res.49, 1025–1033 (1970)PubMedGoogle Scholar
  24. Trautz, O.R.: Crystalline organization of dental mineral. In: Structural and chemical organization of teeth II (A.E.W. Miles ed.), New York: Academic Press 1967Google Scholar
  25. Waters, N.E.: The selectivity of human dental enamel to ionic transport. Arch. oral Biol.16, 305–322 (1971)PubMedGoogle Scholar
  26. Zwolinski, B.J., Eyring, H., Reese, C.E.: Diffusion and membrane permeability I. J. Phys. Chem.52, 1426–1453 (1949)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • G. J. Flim
    • 1
  • J. Arends
    • 1
  1. 1.Laboratory for Materia TechniquaGroningenThe Netherlands

Personalised recommendations